[PDF] [PDF] DROITES I) Coefficient directeur ; ordonnée à lorigine

Définitions : On considère une droite D non parallèle à l'axe des abscisses ② L'ordonnée à l'origine est l'ordonnée du point d'intersection de la droite avec l' axe des ② Pour trouver b, utiliser le fait que A (ou B) est un point de la droite, 



Previous PDF Next PDF





[PDF] Coordonnées à lorigine CST et TS wwwsylvainlacroixca Les

L'ordonnée à l'origine : b c'est la constante dans l'équation L'abscisse à l'origine : si y=0, d = m b − On trouve la valeur de b lorsque l'on met x = 0 Alors on 



[PDF] Equation dune droite dans un repère - KeepSchool

y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine Si (d) est une droite parallèle à l'axe des abscisses, alors son équation de droite sera du 



[PDF] DROITES I) Coefficient directeur ; ordonnée à lorigine

Définitions : On considère une droite D non parallèle à l'axe des abscisses ② L'ordonnée à l'origine est l'ordonnée du point d'intersection de la droite avec l' axe des ② Pour trouver b, utiliser le fait que A (ou B) est un point de la droite, 



[PDF] Fiche méthode équations de droites et coordonnées

parallèle à l'axe des abscisses admet une équation du type y=k (k étant un réel ) ) toute droite non (m est appelé coefficient directeur, et p ordonnée à l'origine) Théorème : Si A ( xA Après résolution, on trouve les coordonnées de M 



[PDF] Coordonnées - Labomath

Le repère (O,I) définit le point O comme origine, la longueur OI comme unité de On cherche à trouver l'abscisse du point M qui est le milieu du segment [AB]



[PDF] Fonctions y=ax et y=ax+b

on trouve bien y − y1 x − x1 Deux droites distinctes ayant la même ordonnée à l'origine se coupent sur l'axe vertical 3 Trois cas Cette constante est l' abscisse du point S'ils le sont, on peut trouver graphiquement a et b et obtenir



[PDF] LARITHMÉTIQUE : Le plan cartésien

l'on appelle l'origine C'est le centre du plan cartésien La droite horizontale C'est l'axe des abscisses et on lui attribue la coordonnée Les nombres situés à la 



[PDF] € f : x →y = mx+ p avec m ≠ ≠0

L'abscisse à l'origine de la droite est l'ab x En pratique, elle r l'origine est une fonction du l'équation d'une droite, il faut connaître les valeurs des coefficient



[PDF] 1 Forme canonique 2 Calcul des coordonnées du sommet et

La parabole coupe l'axe des abscisses aux points de coordonnées (5; 0) et (1; 0) On a peut alors retrouver l'abscisse du sommet S de la parabole de trois 

[PDF] equation de droites perpendiculaires

[PDF] équation symétrique

[PDF] pente de deux droites perpendiculaires

[PDF] coordonnées ? l origine

[PDF] equation d une droite

[PDF] normes apa uqam

[PDF] tableau apa

[PDF] forme factorisée a canonique

[PDF] parabole forme canonique

[PDF] format mémoire universitaire

[PDF] eric emmanuel schmitt pdf

[PDF] normes présentation ulaval

[PDF] guide de présentation des travaux ulaval fsa

[PDF] guide de rédaction ulaval fsa

[PDF] page titre ulaval

Droites 1/3 DROITES

I) Coefficient directeur ; ordonnée à l'origine On considère le plan muni d'un repère (,,)Oijrr.

1) Droites non parallèles à l'axe des abscisses

Définitions : On considère une droite D non parallèle à l'axe des abscisses. Quels que soient les points A et B sur la droite D, le rapport BA

BAyy xx- - est constant et est appelé le coefficient directeur a de la droite D : ® =--=horizontalt déplacement verticaldéplacemen ABAB

xxyya. ‚ L'ordonnée à l'origine est l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées.

Coefficient directeur positif Coefficient directeur négatif

Remarque : Les droites parallèles à l'axe des ordonnées ou " verticales » n'ont pas de coefficient directeur.

2) Des méthodes

Méthode 1 : Dessiner un coefficient directeur (méthode de l'escalier). a = - 3 1 Méthode 2 : Lire le coefficient directeur d'une droite sur un graphique.

Choisir deux points A et B sur la droite.

‚ Se déplacer de A vers B par la méthode de l'escalier. ƒ En déduire le coefficient directeur : horizontaltdéplacemenverticaltdéplacemen.

Exemple : On se déplace de A vers B

- en se déplaçant vers la droite de 3 graduations - puis en descendant de 2 graduations. Le coefficient directeur de la droite (AB) est : a = Remarque : on peut aussi lire les coordonnées de A et de B et calculer a ;

A ( ; ) B ( ; ) =--=

ABAB

xxyya 4 2 3 - 1 y A B O x

01 Ordonnée à l'origine Ordonnée

à l'origine x x y y 1 1 1 0

a = 2 = 2 4 1 1 Droites 2/3 Méthode 3 : Tracer une droite dont on connaît un point et le coefficient directeur.

Placer le point.

‚ Dessiner le coefficient directeur en partant de ce point. Exemple : Tracer la droite · passant par A (1 ; -2)

· de coefficient directeur a = 3

4

3) Coefficients directeurs et droites parallèles

Propriété : On considère deux droites D et z non parallèles à l'axe des ordonnées. · Si D et z sont parallèles, alors elles ont le même coefficient directeur. · Réciproquement : si D et z ont même coefficient directeur, alors D et z sont parallèles.

II) Equations de droites

On considère le plan muni d'un repère (,,)Oijrr.

1) Théorème

Théorème : · Toute droite D non parallèle à l'axe des ordonnées a une équation de la forme y = a x + b où a et b sont deux nombres réels. Cette équation y = a x + b est appelée équation réduite de D. Le nombre a est le coefficient directeur de D et le nombre b est l'ordonnée à l'origine de D. · Toute droite D' parallèle à l'axe des ordonnées a une équation de la forme x = c où c est un nombre réel et correspond à l'abscisse constante de tous les points de D'.

Exemples :

O irjr

D

1 y = .2x +3 1

2 O irjry = 3

D2 O irjrx = 2

D 3

D1 a pour équation y = .2x + 3.

Coefficient directeur a = .2 ;

ordonnée à l'origine b = 3. D

2 a pour équation y = 3.

Coefficient directeur a = 0.

D2 est parallèle à l'axe des abscisses.

Ordonnée à l'origine b = 3. D

3 a pour équation x = 2.

D3 n'a pas de coefficient directeur.

D3 est parallèle à l'axe des

ordonnées.

2) Des méthodes

a) Tracer une droite dont on connaît une équation · Méthode 4 : Placer l'ordonnée à l'origine.

‚ Dessiner le coefficient directeur.

Exemple : Tracer la droite d'équation y = x

31- 2.

y O x y O x 1 1 1 1 Droites 3/3 · Méthode 5 : Déterminer les coordonnées de deux points.

‚ Placer ces deux points.

Exemple 1 : Tracer la droite d'équation y = - x 21+ 3

Si x = 0, alors y = ......

Si x = 4, alors y = ......

On place les points A (0 ; ) et B (4 ; ) Exemple 2 : Tracer la droite d'équation 2x + 3y + 3 = 0

Si x = 0, alors y = ...... .

Si x = 3, alors y = ...... .

Remarque : on peut aussi déterminer l'équation réduite sous la forme y = a x + b, puis utiliser la méthode 4.

2x + 3y + 3 = 0 donne y =

Conseils : · Pour avoir un tracé précis, les points doivent être suffisamment éloignés.

· Prendre des valeurs donnant des calculs simples et si possible des nombres entiers. b) Déterminer l'équation d'une droite · Méthode 6 : Déterminer graphiquement l'équation d'une droite. Lire le coefficient directeur par la méthode de l'escalier.

‚ Lire l'ordonnée à l'origine.

Exemple :

Le coefficient directeur est a =

‚ L'ordonnée à l'origine est b =

L'équation de la droite est donc : y =

· Méthode 7 : Déterminer par le calcul l'équation d'une droite passant par deux points A et B.

L'équation est de la forme y = a x + b.

Calculer a en écrivant

ABAB xxyya--=.

‚ Pour trouver b, utiliser le fait que A (ou B) est un point de la droite, c'est-à-dire que ses coordonnées vérifient

l'équation cherchée. Exemple : Déterminer l'équation de la droite (D) passant par A (-1 ; 2) et B (3 ; -4)

On a : =--=

ABAB xxyya2 3 46
)1(324-=-= L'équation de (D) est donc de la forme : y = - x

23 + b.

Comme A est un point de (D), on peut écrire :

2 = - 2

3 J (- 1) + b d'où 322b+=, soit b = 31222-=.

L'équation de (D) est donc : y = - 2

3x + 2

1. y O x x y y O x x y y O x y O x 1 1 1 11 1 1 1quotesdbs_dbs11.pdfusesText_17