[PDF] [PDF] Ce document est le fruit dun long travail approuvé par le jury de

Directeur de recherche CNRS (ICPEES – Strasbourg) Je remercie Béatrice Biscans, directrice de recherche au Laboratoire de Génie Chimique de Toulouse



Previous PDF Next PDF





[PDF] DEC181568DRH_jury dadmission DRpdf - DGDR CNRS

31 mai 2018 · Le Président - directeur général du Centre national de la recherche scientifique, Article 1er - Il est créé un jury d'admission commun aux concours de recrutement M ABRY Patrice, Directeur de recherche du CNRS, Laboratoire de Physique Mme BISCANS Beatrice, Directeur de recherche du CNRS, 



[PDF] DEC191317DRH_Jury admission DRpdf - DGDR CNRS

3 jui 2019 · Le Président - directeur général du Centre national de la recherche scientifique, Il est créé un jury d'admission commun aux concours de recrutement des directeurs de Patrice, directeur adjoint de l'institut, son représentant; Mme BISCANS Béatrice, directrice de recherche du CNRS, Laboratoire de 



[PDF] bo-cnrs-100311pdf - DGDR CNRS

4 mar 2011 · 2011 dont le directeur est Madame Annick BELLAN ; Monsieur Patrice FORT, Directeur de recherche, et à Madame Martine THEILLERE,



[PDF] FEVRIER 20 2 0 - DGDR CNRS

1 fév 2020 · Art 1er – Madame Claire JOUBERT, Directrice de recherche, est nommée Transformations (UMET), dont le directeur est Patrice WOISEL ;



[PDF] Laboratoire de Génie Chimique LGC - Hcéres

La direction du laboratoire est assurée par Mme Béatrice BISCANS, directrice de recherche CNRS, M Xavier JOULIA, professeur INPT et M Patrice BACCHIN, 



[PDF] 1 la caracterisation granulometrique - Ce document est le fruit dun

J'adresse aussi mes remerciements à Madame Béatrice BISCANS, directeur de recherche au CNRS, et à Monsieur Paul BO\VEN d'avoir accepté d'être ( espace discret) est une matrice de N lignes et M colonnes, chaque ligne comportant M



[PDF] Ce document est le fruit dun long travail approuvé par le jury de

Directeur de recherche CNRS (ICPEES – Strasbourg) Je remercie Béatrice Biscans, directrice de recherche au Laboratoire de Génie Chimique de Toulouse



[PDF] NUCLEATION ET TRANSITIONS DE PHASES EN CHIMIE - CORE

4 fév 2013 · Stéphane Veesler, Chargé de Recherche au CNRS et responsable du La cristallisation est un procédé de purification et de mise en forme, 

[PDF] Béatrice Cahour Research topics / Thèmes de recherche - France

[PDF] Beatrice Caracciolo - Almine Rech Gallery

[PDF] BEATRICE CASTAGNET- Née le 03/10/73 - 22 ans

[PDF] Beatrice DEWEZ - Analyste/programmeur - Espèces En Voie De Disparition

[PDF] Béatrice Didier Béatrice Didier a une formation d`actrice et a suivi un

[PDF] Béatrice Gaultier - Conception

[PDF] Béatrice Graf - beatricegraf.ch - France

[PDF] Beatrice LAGHEZZA - Ecritures

[PDF] béatrice massin - Château de Versailles Spectacles

[PDF] Béatrice PÉPIN

[PDF] Béatrice Ramstein - Irfu

[PDF] Béatrice Uria-Monzon chante Lady Macbeth

[PDF] Béatrice Valentine Amhrein - France

[PDF] BEATRIX BECK S`EST ETEINTE

[PDF] Beatson Clark PDF - De L'Automobile Et Des Véhicules

AVERTISSEMENT

Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposit ion de l'e nsemble de la communauté universitaire élargie. Il est sou mis à la propr iété in tellectu elle de l'auteur. Cec i implique une obligation de citation et de référencement lors de l'utilisation de ce document. D'autre part, toute contre façon, plagi at, reproduction i ll icite encourt une poursuite pénale.

Contact : ddoc-theses-contact@univ-lorraine.fr

LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 Institut National de Recherche et de Sécurité

Département Ingénierie des Procédés

1 rue du Morvan CS 60027

Université de Lorraine

34 cours Léopold

54000 Nancy Laboratoire Réactions et Génie des Procédés

UMR 7472 CNRS

1 rue Granville BP 20451

54001 Nancy Cedex

École Doctorale RP2E

Ressources Procédés Produits et Environnement

THÈSE

Spécialité : Génie des Procédés et des Produits Par

Anaëlle CLOTEAUX

Soutenue publiquement le 12 mars 2015 devant le jury composé de :

Rapporteurs : Valérie HÉQUET Valérie KELLER Maître-assistant (École des Mines de Nantes) Directeur de recherche CNRS (ICPEES Strasbourg)

Examinateurs : Béatrice BISCANS Dominique THOMAS Jean-Claude ANDRÉ Fabien GÉRARDIN Directeur de recherche CNRS (LGC Toulouse)

Professeur (LRGP Nancy)

Directeur de recherche CNRS (LRGP Nancy)

Invités : Michel POURQUET Michel LEBRUN Directeur du centre de Lorraine

Ingénieur conseil CARSAT Auvergne

Remerciements

Cette thèse a été réalisée au sein du département Ingénierie des Procédés, laboratoire PROCédés et

Épuration des Polluants, de et de Sécurité (INRS) et du Laboratoire

Réactions et Génie des Procédés (LRGP - UMR 7472 CNRS). Je remercie donc leurs responsables

respectifs, Michel Pourqréaliser ces travaux dans un cadre privilégié. de Strasbourg, pour avoir accepté de juger ce travail en tant que rapporteurs.

Je remercie Béatrice Biscans, directrice de recherche au Laboratoire de Génie Chimique de Toulouse

pour avoir présidé le jury lors de la soutenance de mes travaux de thèse.

Je remercie Michel Lebrun, ingénieur conseil à la CARSAT Auvergne, et Michel Pourquet, directeur de

apporté leurs regards de préventeurs lors de ma soutenance. Je remercie Dominique Thomas pour avoir accepté directeur de thèse e t pour avo ir su recadrer les esprits illuminés.

Je remercie chaleureusement Jean-Claude André pour avoir apporté ces idées lumineuses tout au

long de ce projet, pour avoir su poser les questions qui dérangent et pour ses petits-d éjeuners

scientifiques. Je remercie sincèrement Fabien Gérardin, qui a impulsé ce pro sa disponibilité pour toutes les questions du quotidien mais surtout pour de beaux moments de brainstorming devant le tableau blanc.

Noël Midoux

Je remercie également tous les me mbres du labor atoire qu i savent ent retenir une ambiance

Je remercie enfin mes amis, en particulier Céline et Alex qui sont passés par là avant moi, ma famille

qui a été présente malgré la distance et, bien sûr, mon homme qui connaît mieux que moi mes forces

et mes faiblesses. - 1 -

Table des matières

Table des figures ............................................................................................................................. 5

Table des tableaux .......................................................................................................................... 8

Nomenclature ............................................................................................................................... 10

Introduction générale .................................................................................................................... 13

Chapitre 1. Étude bibliographique ................................................................................................. 17

Introduction ....................................................................................................................................... 18

1.1. Le formaldéhyde ......................................................................................................................... 19

1.1.1. Propriétés physiques et chimiques ..................................................................................... 19

1.1.2. Toxicologie et valeurs de référence .................................................................................... 20

position .......................................................................................................... 21

................................................................ 23 r intérieur .......................................... 24

1.2. Le toluène ................................................................................................................................... 26

1.2.1. Propriétés physiques et chimiques ..................................................................................... 26

1.2.2. Toxicologie et valeurs de références ................................................................................... 26

...................................................................... 27

....................................................................................................... 29

................................................................... 29 ............................................................................... 30

1.3.3. Choix technologique et contraintes du secteur tertiaire .................................................... 34

................................................................................................................................ 36

1.4.1. Les contacteurs .................................................................................................................... 36

1.4.2. La solubilité des gaz dans les liquides ................................................................................. 38

1.4.3. Le transport de matière ....................................................................................................... 38

1.4.3.1. Diffusion moléculaire .................................................................................................................. 38

................................................................................................................ 39

Modèles de transfert ........................................................................................................................... 39

Coefficients de transfert ...................................................................................................................... 41

ieur ................ 41

1.5. La photocatalyse ........................................................................................................................ 43

1.5.1. La réaction de catalyse hétérogène .................................................................................... 43

1.5.2. Le mécanisme photocatalytique ......................................................................................... 44

1.5.3. Le dioxyde de titane ............................................................................................................ 46

1.5.3.1. Propriétés et structures cristallines ........................................................................................... 46

1.5.3.2. Techniques de dépôt ................................................................................................................... 46

1.5.3.3. Toxicité ........................................................................................................................................ 47

1.5.4. Les ............................................... 48

1.5.5. Les modèles cinétiques ....................................................................................................... 50

1.5.6. La dégradation photocatalytique du formaldéhyde ........................................................... 52

1.5.7. La dégradation photocatalytique du toluène ...................................................................... 53

Conclusion ......................................................................................................................................... 55

- 2 - Chapitre 2. Simulation numérique pour une évaluation a priori

autonome dans un bureau ............................................................................................................ 57

Introduction ....................................................................................................................................... 58

2.1. Système simulé ........................................................................................................................... 58

............................................................................................... 59

2.3. Conditions de simulations ........................................................................................................... 61

2.4. Cas de référence ......................................................................................................................... 61

2.5. Pièce sans épuration ................................................................................................................... 62

2.6. Influence du positionnement ...................................................................................................... 62

2.7. Influence du débit du réacteur ................................................................................................... 63

2.8. Influence du débit de ventilation ................................................................................................ 65

................................................................................ 65

Conclusion ......................................................................................................................................... 67

Chapitre 3. Dégradation photocatalytique du formaldéhyde par une suspension de TiO

2 .............. 69

Introduction ....................................................................................................................................... 70

3.1. Matériels et méthodes ................................................................................................................ 70

3.1.1. Dispositif expérimental ....................................................................................................... 70

.................................................... 71

3.2. Résultats expérimentaux ............................................................................................................ 72

........................................................ 72

3.2.2. Influence de la température sur la vitesse de dégradation ................................................ 73

3.2.3. Influence de la teneur en oxygène sur la vitesse de dégradation ....................................... 73

3.3. Étude cinétique ........................................................................................................................... 74

3.3.1. Méthode de calcul de la répartition lumineuse dans le réacteur ....................................... 74

................................................................ 76 ................................................................... 77

3.3.4. Comparaison avec les modèles cinétiques .......................................................................... 78

Conclusion ......................................................................................................................................... 80

Chapitre 4. Dégradation photocatalytique du toluène par une suspension de TiO

2 ........................ 81

Introduction ....................................................................................................................................... 82

-produits de dégradation en phase liquide ......... 82

4.2. Dispositif expérimental ............................................................................................................... 83

4.3. Mise en évidence de la photocatalyse du toluène ...................................................................... 83

4.4. Identification des sous-produits ................................................................................................. 84

Conclusion ......................................................................................................................................... 85

Chapitre 5. Dégradation photocatalytique du formaldéhyde dans un réacteur à lit fixe ................. 87

Introduction ....................................................................................................................................... 88

5.1. Dispositif expérimental ............................................................................................................... 88

5.2. Efficacité du réacteur à lit fixe .................................................................................................... 90

................................................................................... 91

5.3.1. Modèle à dispersion ............................................................................................................ 91

5.3.2. Modèle des mélangeurs en cascade ................................................................................... 93

5.3.3. Étude en circuit ouvert ........................................................................................................ 93

5.3.4. Étude en circuit fermé ......................................................................................................... 94

- 3 -

5.4. Modélisation du lit avec réaction ............................................................................................... 97

5.4.1. Bilan de matière avec réaction de surface .......................................................................... 97

5.4.2. Répartition lumineuse dans le réacteur .............................................................................. 98

5.4.3. Détermination de la cinétique de photocatalyse .............................................................. 100

5.4.4. Influence du débit sur la vitesse de dégradation .............................................................. 102

5.5. Comparaison des cinétiques : TiO

2 en suspension / TiO2 déposé ............................................. 103

Conclusion ....................................................................................................................................... 107

Chapitre 6. Pilote expérimental couplant absorption et photocatalyse ........................................ 109

Introduction ..................................................................................................................................... 110

6.1. Absorption du formaldéhyde en continu .................................................................................. 110

.................................................. 110

6.1.2. Dispositif de génération de formaldéhyde en phase gazeuse .......................................... 111

............................................ 112

6.1 ......................................................... 112

...................................................................................................... 113

6.2. Absorption et dégradation du formaldéhyde en continu ......................................................... 118

6.2.1. Dispositif expérimental ..................................................................................................... 118

6.2.2. Modélisation du couplage absorption-photocatalyse ...................................................... 119

6.2.3. Comparaison des résultats expérimentaux et calculés ..................................................... 119

6.2.3.1. Fonctionnement en mode " absorption seule » ....................................................................... 119

6.2.3.2. Fonctionnement en mode absorption et dégradation ............................................................. 120

................................................ 121 Influence des paramètres liés au réacteur : charge en TiO

2 et irradiation ........................................ 121

............................................... 123

6.3. Étude de faisabilité pour le bureau " type » ............................................................................. 124

6.3.1. Dimensionnement du réacteur photocatalytique ............................................................. 124

6.3.1.1. Réacteur photocatalytique de géométrie circulaire ................................................................. 125

6.3.1.2. Réacteur photocatalytique de géométrie annulaire ................................................................. 128

.................................................................................... 130

6.3.3. Épurateur pour un cas réel ................................................................................................ 132

Conclusion ....................................................................................................................................... 134

Conclusions et perspectives ......................................................................................................... 135

Références bibliographiques ....................................................................................................... 139

Annexes ...................................................................................................................................... 157

Annexe A. Peut-on approfondir les connaissances sur le mécanisme de photocatalyse ? .............. 158

A.1. La structure électronique des semi-conducteurs ................................................................ 158

..................................................................................................... 159

A.3. Le devenir des charges photo-générées .............................................................................. 160

Conclusion ................................................................................................................................... 167

Code de calcul .... 168

Code de calcul ............ 170

................................................................................. 172

D.1. Débit de liquide .................................................................................................................... 172

................................................................. 173 - 4 -

D.3. Perte de charge .................................................................................................................... 174

D.4. Test du taux de mouillage et surface mouillée .................................................................... 174

D.5. Hauteur de garnissage ......................................................................................................... 174

D.6. Facteur de garnissage .......................................................................................................... 176

Liste des publications .................................................................................................................. 178

- 5 -

Table des figures

................................... 22

formaldéhyde. ............................................................................................................................... 23

Figure 1.3. Schéma de principe de la technologie retenue. .................................................................. 35

Figure 1.4. Technologies de contacteurs gaz-liquide. Phase liquide continue : colonnes à bulles (a),

gazo-siphons (b), méla ngeurs statiques (c) et hydr o-éjecteurs (j). Phase gazeuse continue :

colonnes à garni ssa ge (d), colonnes à plateaux perfo rés (e), colonnes à pulvéri sati on (f),

colonnes à film tombant (g), éjecteurs (h) et venturis (i). ............................................................ 37

Figure 1.5. Représentation des modèles du film (a) et du double film (b). .......................................... 39

Figure 1.6. Les étapes ........................................... 43

Figure 1.7. Principe de la photocatalyse sur un grain de semi-conducteur. ......................................... 44

Figure 1.8. Influence des principaux paramètres sur la vitesse de dégradation photocatalytique. (a)

dégrader, (d) flux lumineux et (e) température. .......................................................................... 48

Figure 1.9. Mécanisme réactionnel de la dégradation du toluène (Baltaretu et al., 2008 ; d Hennezel

et al., 1998)

et de produits cycliques secondaires (d). ...................................................................................... 54

Figure 2.1. Géométrie de la pièce simulée avec le réacteur placé en position P1 (a) et plan des trois

positions de réacteur possibles (b). .............................................................................................. 59

Figure 2.2. Lignes de courant colorées en fonction de la vitesse (m s -1) dans le plan vertical z = 1,5 m (a) et champs de concentration en formaldéhyde (µg m -3) dans le plan horizontal à 1 m du sol (b)

(QV = 41 m3 h-1). ............................................................................................................................. 62

Figure 2.3. Concentration moyenne en formaldéhyde et abattement pour les trois positions P1, P2 et

P3 (QV = QG = 41 m3 h-1, EG = 0,75). ............................................................................................... 63

Figure 2.4 Champs de concentration en formaldéhyde (µg m -3) dans le plan vertical passant par le

réacteur pour les positions P1, P2 et P3 (QV = QG = 41 m3 h-1, EG = 0,75). .................................... 63

Figure 2.5. Concentration moyenne en formaldéhyde et abattement en fonction du débit du réacteur

(Réacteur en P3, QV = 41 m3 h-1, EG = 0,75). .................................................................................. 64

Figure 2.6. Champs de vitesse (m s

-1) dans le plan vertical passant par le réacteur (a) et champs de concentration en formaldéhyde (µg m -3) dans le plan horizontal à 1 m du sol (b). (Réacteur en

P3, QV = 41 m3 h-1, EG = 0,75). ........................................................................................................ 64

Figure 2.7 . Concentrati on moyenne en formaldéhyde e t abattem ent en fonction du débit de

ventilation (Réacteur en P3, QG = 41 m3 h-1, EG = 0,75). ............................................................... 65

cacité propre du réacteur pour différentes conditions de

débit. ............................................................................................................................................. 66

Figure 3.1. Dispositif expérimental : (1) lampes, (2) réacteur, (3) agitateur. ........................................ 70

-A () et spectre de transmission du verre borosilicaté

-3 m (--)(Rubin, 1985). .......................................................................................... 71

-acétanilide

pour la détection du formaldéhyde .............................................................................................. 71

C0 = 3,3 10-2 mol m-3, V = 2,5 10-4 m3,

c

TiO2 = m-3). ........................................................................................................................... 72

Figure 3.5. Influence de la température sur la vitesse de dégradation (C0 = 3,3 10-2 mol m-3, V = 2,5

10

-4 m3, cTiO2 = 100 g m-3). .............................................................................................................. 73

Figure 3.6. Influence de la teneur en oxygène - Points expérimentaux et régressions (C0 = 3,3 10-2 mol

L

-1, V = 2,0 10-4 m3, cTiO2 = 1 m-3, débit de bullage 0,5 L min-1). ............................................... 74

- 6 -

Figure 3.7. Définition du repère pour le calcul de la répartition lumineuse dans le réacteur. ............. 74

2. ................................. 76

Figure 3.9. Irradiation (W m

-2) au niveau de la surface (a) et dans le plan (Oxy) passant par le centre

du réacteur (b) (cf. figure 3.7). ...................................................................................................... 77

Figure 3.10. Évolution du rapport C/C0 au cours du temps pour différentes concentrations initiales (a)

configuration 1, (b) configuration 2. ............................................................................................. 78

Figure 3.11. Vitesses de dégradation initiales expérimentales dans les configurations 1 et 2. ............ 78

Figure 4.1. Réacteur pour la dégradation du toluène en système fermé. ............................................ 83

Figure 4.2. Évolution du rapport C/C0 en fonction du temps. Configuration A : C0 = 1,11 10-3 mol m-3,

c

TiO2 = 100 g m-3 et UV-A. Configuration B : C0 = 0,98 10-3 mol m-3, sans TiO2, sans UV-A. ............ 84

Figure 5.1. Dispositif expérimental : (1) réacteur à lit fixe, (2) lampe, (3) réservoir. ............................ 88

Figure 5.2. Évolution du rapport C/C0 au cours du temps pour différentes concentrations initiales. .. 90

Figure 5.3. Évolution du rapport C/C0 C0 =

1,7 10

quotesdbs_dbs26.pdfusesText_32