[PDF] [PDF] Nombres complexes - Exo7 - Exercices de mathématiques

Exercice 15 Soit z un nombre complexe de module ρ, d'argument θ, et soit z son conjugué Calculer (z+z)(z2 +z2) (zn + zn) en fonction de ρ et θ



Previous PDF Next PDF





[PDF] Sujets de bac : Complexes

Sujets de bac : Complexes Sujet n°1 : extrait d'Asie – juin 2002 1) Dans le plan complexe ; ; , on considère quatre points , , et d'affixes respectives 3 ; 4 ; 2 3



[PDF] Sujet et corrigé mathématiques bac s, obligatoire - Freemaths

22 jui 2018 · En déduire l'écriture de chacun des nombres complexes , et sous forme exponentielle et vérifier que est un imaginaire pur dont on précisera la 



[PDF] Sujet et corrigé mathématiques bac s, specialité, Liban - Freemaths

29 mai 2018 · EXERCICE 2 (3 points) Commun à tous les candidats 1 Donner les formes exponentielle et trigonométrique des nombres complexes 1+i et 



[PDF] Pascal Lainé 1 NOMBRES COMPLEXES Exercice 1 - Licence de

Calculer le module et l'argument de chacun des nombres complexes suivants ( en fonction de Effectuer les calculs suivants en utilisant la forme exponentielle



[PDF] Nombres complexes Exercices corrigés - Free

Dans l'exercice, le plan complexe est rapporté au repère orthonormal ( ; , ) http ://perso wanadoo fr/gilles costantini/Lycee_fichiers/BAC/BACS2005 pdf 1 Quelles sont, sous forme exponentielle, les affixes de A', B' et C' images par f de A, 



[PDF] Nombres et plan complexes Les exercices - XyMaths - Free

7 5 Exercices complets type Bac 8 1 Formes algébrique, trigonométrique et exponentielle Exercice 1 : Ecrire sous forme algégbrique les nombres complexes 



[PDF] Terminale S - Nombres complexes - Exercices - Physique et Maths

Nombres complexes – Exercices Exercice 1 1 Donner l'écriture algébrique des nombres complexes ci-dessous : a z Annales du baccalauréat Exercice 3 6



[PDF] Exercices : Argument dun nombre complexe Corrigés - Jai compris

Écrire un nombre complexe sous forme trigonométrique et exponentielle 1) Déterminer le Fonction complexe - D'apr`es sujet de Bac Le plan complexe est  



[PDF] Forme exponentielle nombre complexe exercice corrigé pdf - f-static

Fixe dans l'exercice vidéo 17: Type Bac - Nombre complexe - Équation - Conjugaison - Équation de forme exponentielle est considérée (E): z-4-4 1) Montrer 



[PDF] Nombres complexes - Exo7 - Exercices de mathématiques

Exercice 15 Soit z un nombre complexe de module ρ, d'argument θ, et soit z son conjugué Calculer (z+z)(z2 +z2) (zn + zn) en fonction de ρ et θ

[PDF] exercice bac exponentielle et logarithme

[PDF] exercice bac exponentielle suite

[PDF] exercice bac fonction ln es

[PDF] exercice bac français écrit révisions

[PDF] exercice bac francais figure de style

[PDF] exercice bac français première

[PDF] exercice bac francais stmg

[PDF] exercice bac liban 2018

[PDF] exercice bac limites de fonctions

[PDF] exercice bac loi binomiale es

[PDF] exercice bac loi normale es

[PDF] exercice bac loi normale stmg

[PDF] exercice bac maths es

[PDF] exercice bac maths liban 2016

[PDF] exercice bac maths logarithme népérien

Exo7

Nombres complexes

1 Forme cartésienne, forme polaire

Exercice 1Mettre sous la formea+ib(a;b2R) les nombres :

3+6i34i;1+i2i

2 +3+6i34i;2+5i1i+25i1+i: Écrire sous la formea+ibles nombres complexes suivants : 1.

Nombre de module 2 et d"ar gumentp=3.

2.

Nombre de module 3 et d"ar gumentp=8.

Calculer le module et l"argument deu=p6ip2

2 etv=1i. En déduire le module et l"argument dew=uv Déterminer le module et l"argument des nombres complexes : e eiaeteiq+e2iq: Exercice 5Calculer les racines carrées de 1;i;3+4i;86i;et 7+24i. 1.

Calculer les racines carrées de

1+ip2 . En déduire les valeurs de cos(p=8)et sin(p=8). 2.

Calculer les v aleursde cos (p=12)et sin(p=12).

1

Résoudre dansCles équations suivantes :

z

2+z+1=0 ;z2(1+2i)z+i1=0 ;z2p3zi=0 ;

z

2(514i)z2(5i+12) =0 ;z2(3+4i)z1+5i=0 ; 4z22z+1=0 ;

z

4+10z2+169=0 ;z4+2z2+4=0:

Exercice 8Calculer la sommeSn=1+z+z2++zn.

1.

Résoudre z3=1 et montrer que les racines s"écrivent 1,j,j2. Calculer 1+j+j2et en déduire les racines

de 1+z+z2=0. 2.

Résoudre zn=1 et montrer que les racines s"écrivent 1;e;:::;en1. En déduire les racines de 1+z+z2+

+zn1=0. Calculer, pourp2N, 1+ep+e2p++e(n1)p.

Trouver les racines cubiques de 22iet de 11+2i.

1. Soient z1,z2,z3trois nombres complexes distincts ayant le même cube.

Exprimerz2etz3en fonction dez1.

2. Donner ,sous forme polaire, les solutions dans Cde : z

6+(7i)z388i=0:

(Indication : poserZ=z3; calculer(9+i)2)

4 Géométrie

Exercice 12Déterminer l"ensemble des nombres complexesztels que : 1. z3z5 =1; 2. z3z5 =p2 2 Montrer que pouru;v2C, on aju+vj2+juvj2=2(juj2+jvj2):Donner une interprétation géométrique.

Soit(A0;A1;A2;A3;A4)un pentagone régulier. On noteOson centre et on choisit un repère orthonormé

(O;!u;!v)avec!u=!OA0, qui nous permet d"identifier le plan avec l"ensemble des nombres complexesC.A0 A 3 A 4A 1 A 2 O

1i1.Donner lesaffixesw0;:::;w4despointsA0;:::;A4. Montrerquewk=w1kpourk2f0;1;2;3;4g. Montrer

que 1+w1+w21+w31+w41=0. 2.

En déduire que cos (2p5

)est l"une des solutions de l"équation 4z2+2z1=0. En déduire la valeur de cos(2p5 3. On considère le point Bd"affixe1. Calculer la longueurBA2en fonction de sinp10 puis dep5 (on remarquera que sin p10 =cos2p5 4.

On cons idèrele point Id"affixei2

, le cercleCde centreIde rayon12 et enfin le pointJd"intersection de Cavec la demi-droite[BI). Calculer la longueurBIpuis la longueurBJ.

5.Application:Dessiner un pentagone régulier à la règle et au compas. Expliquer.

5 Trigonométrie

Exercice 15Soitzun nombre complexe de moduler, d"argumentq, et soitzson conjugué. Calculer(z+z)(z2+z

2):::(zn+z

n)en fonction deretq. En utilisant les nombres complexes, calculer cos5qet sin5qen fonction de cosqet sinq.

Exercice 17SoitZ[i] =fa+ib;a;b2Zg.

1. Montrer que si aetbsont dansZ[i]alorsa+betable sont aussi. 2.

T rouverles élements in versiblesde Z[i], c"est-à-dire les élémentsa2Z[i]tels qu"il existeb2Z[i]avec

ab=1. 3. Vérifier que quel que soit w2Cil existea2Z[i]tel quejwaj<1. 4.

Montrer qu"il e xistesur Z[i]une division euclidienne, c"est-à-dire que, quels que soientaetbdansZ[i]

il existeqetrdansZ[i]vérifiant : a=bq+ravecjrj2¯z2¯z2=z1¯z2jz2j2.Indication pourl"exer cice2 NIl faut bien connaître ses formules trigonométriques. En particulier si l"on connait cos(2q)ou sin(2q)on sait

calculer cosqet sinq.Indication pourl"exer cice3 NPassez à la forme trigonométrique. Souvenez-vous des formules sur les produits de puissances :

e

iaeib=ei(a+b)eteia=eib=ei(ab):Indication pourl"exer cice4 NPour calculer un somme du typeeiu+eivil est souvent utile de factoriser pareiu+v2

.Indication pourl"exer cice5 NPourz=a+ibon cherchew=a+ibtel que(a+ib)2=a+ib. Développez et indentifiez. Utilisez aussi que

jwj2=jzj.Indication pourl"exer cice6 NIl s"agit de calculer les racines carrées de 1+ip2 =eip4

de deux façons différentes.Indication pourl"exer cice7 NPour les équation du typeaz4+bz2+c=0, poserZ=z2.Indication pourl"exer cice8 NCalculer(1z)Sn.Indication pourl"exer cice12 NLe premier ensemble est une droite le second est un cercle.

Indication pour

l"exer cice

13 NPour l"interprétation géométrique cherchez le parallélogramme.

Indication pour

l"exer cice

15 NUtiliser la formule d"Euler pour faire apparaître des cosinus.

Indication pour

l"exer cice

16 NAppliquer deux fois la formule de Moivre en remarquantei5q= (eiq)5.5

Correction del"exer cice1 NRemarquons d"abord que pourz2C,zz=jzj2est un nombre réel, ce qui fait qu"en multipliant le dénominateur

par son conjugué nous obtenons un nombre réel. =35 +65
i:

Calculons

1+i2i=(1+i)(2+i)5

=1+3i5 et 1+i2i 2 =1+3i5 2 =8+6i25 =825 +625
i: Donc 1+i2i 2 +3+6i34i=825 +625
i35 +65
i=2325 +3625
i:

Soitz=2+5i1i. Calculonsz+z, nous savons déjà que c"est un nombre réel, plus précisément :z=32

+72
iet doncz+z=3.Correction del"exer cice2 N1.z1=2eip3 =2(cosp3 +isinp3 ) =2(12 +ip3 2 ) =1+ip3.

2.z2=3eip8

=3cosp8

3isinp8

=3p2+p2 2

3ip2p2

2 Il nous reste à expliquer comment nous avons calculé cos p8 et sinp8 : posonsq=p8 , alors 2q=p4 et donc cos(2q)=p2 2 =sin(2q). Mais cos(2q)=2cos2q1. Donc cos2q=cos(2q)+12 =14 (2+p2). Et ensuite sin

2q=1cos2q=14

(2p2). Comme 06q=p8 6p2 , cosqet sinqsont des nombres positifs. Donc cos p8 =12 q2+p2;sinp8 =12 q2p2:Correction del"exer cice3 NNous avons u=p6p2i2 =p2 p3 2 i2 =p2 cosp6 isinp6 =p2eip6 puis v=1i=p2eip4

Il ne reste plus qu"à calculer le quotient :

uv =p2eip6p2eip4 =eip6 +ip4 =eip12 :Correction del"exer cice4 ND"après la formule de Moivre poureianous avons : e eia=ecosa+isina=ecosaeisina: Orecosa>0 donc l"écriture précédente est bien de la forme "module-argument". 6

De façon générale pour calculer un somme du typeeiu+eivil est souvent utile de factoriser pareiu+v2

. En effet e iu+eiv=eiu+v2 eiuv2 +eiuv2 =eiu+v2

2cosuv2

=2cosuv2 eiu+v2 Ce qui est proche de l"écriture en coordonées polaires.

Pour le cas qui nous concerne :

z=eiq+e2iq=e3iq2 h eiq2 +eiq2 i =2cosq2 e3iq2 Attention le module dans une décomposion en forme polaire doit être positif ! Donc si cos q2 >0 alors 2cosq2 est le module dezet 3q=2 est son argument ; par contre si cosq2 <0 le module est 2jcosq2 jet l"argument

3q=2+p(le+pcompense le changement de signe careip=1).Correction del"exer cice5 NRacines carrées.Soitz=a+ibun nombre complexe aveca;b2R; nous cherchons les complexesw2Ctels

quew2=z. Écrivonsw=a+ib. Nous raisonnons par équivalence : w

2=z,(a+ib)2=a+ib

,a2b2+2iab=a+ib Soit en identifiant les parties réelles entre elles ainsi que les parties imaginaires : a2b2=a 2ab=b Sans changer l"équivalence nous rajoutons la conditionjwj2=jzj. 8 :a

2+b2=pa

2+b2 a 2b2=a 2ab=b Par somme et différence des deux premières lignes : 8 :a

2=a+pa

2+b22 b

2=a+pa

2+b22 2ab=b ,8 >:a=qa+pa 2+b22 b=qa+pa 2+b22 abest du même signe queb Cela donne deux couples(a;b)de solutions et donc deux racines carrées (opposées)w=a+ibdez. 7 En pratique on répète facilement ce raisonnement, par exemple pourz=86i, w

2=z,(a+ib)2=86i

,a2b2+2iab=86i a2b2=8 2ab=6 ,8 :a

2+b2=p8

2+(6)2=10 le module dez

a 2b2=8 2ab=6 ,8 :2a2=18 b 2=1 2ab=6 ,8 :a=p9=3 b=1 aetbde signes opposés ,8 :a=3 etb=1 ou a=3 etb= +1

Les racines dez=86isont doncw1=3ietw2=w1=3+i.

Pour les autres :

Les racines carrées de 1 sont : +1 et1.

Les racines carrées de isont :p2

2 (1+i)etp2 2 (1+i).

Les racines carrées de 3 +4isont : 2+iet2i.

Les racines carrées de 7 +24isont : 4+3iet43i.Correction del"exer cice6 NPar la méthode usuelle nous calculons les racines carréesw;wdez=1+ip2

, nous obtenons w=sp2+12 p2 +isp212 p2 qui peut aussi s"écrire : w=12 q2+p2+i12 q2p2:

Mais nous remarquons quezs"écrit également

z=eip4 eteip8 vérifie eip8

2=e2ip8

=eip4

Cela signifie queeip8

est une racine carrée dez, donceip8 =cosp8 +isinp8 est égal àwouw. Comme cosp8 >0 alorseip8 =wet donc par identification des parties réelles et imaginaires : cos p8 =12 q2+p2 et sin p8 =12 q2p2: 8

Correction del"exer cice7 NÉquations du second degré.La méthode génerale pour résoudre les équations du second degréaz2+bz+c=0

(aveca;b;c2Ceta6=0) est la suivante : soitD=b24acle discriminant complexe etdune racine carrée de

D(d2=D) alors les solutions sont :

z

1=b+d2aetz2=bd2a:

Dans le cas où les coefficients sont réels, on retrouve la méthode bien connue. Le seul travail dans le cas

complexe est de calculer une racineddeD.quotesdbs_dbs19.pdfusesText_25