[PDF] [PDF] Intégration et probabilités (cours + exercices corrigés) L3 MASS

1 1 2 Exercices 2 4 1 Intégrales des fonctions mesurables positives 2 2 1 Dans le calcul des mesures, on adopte les conventions de calcul suivantes



Previous PDF Next PDF





[PDF] Feuille dexercices 2 : Analyse – Intégrale

f(x)dx = [ln(tan(x))] π/3 π/6 = ln( √ 3) − ln(1/ √ 3) = ln(3) Exercice 4 Calculer les intégrales suivantes en effectuant le changement de variables recommandé



[PDF] 80 Exercices corrig”s - webusersimj-prgfr

Montrer que, au sens des intégrales de Riemann impropres, ∫ +∞ 0 Corrigé cf l'exercice 1 du 14/11/1998 dans le paragraphe examens corrigés Pour le calcul d'une primitive de F(cos x,sinx) o`u F est une fraction rationnelle, on peut



[PDF] Exercices - Calcul dintégrales : corrigé Intégration par - Gecifnet

Exercice 6 - Une suite d'intégrales - L1/Math Sup - ⋆⋆ Pour (n, p) ∈ N∗ × N, l' application x ↦→ xn(ln x)p est définie et continue sur ]0,1] De plus,



[PDF] Calcul intégral Exercices corrigés - Free

Calcul intégral corrigés http://laroche lycee free Terminale S Calcul intégral Exercices corrigés 1 1 Calcul de primitives 1 1 2 Basique 1 1 1 3 Basique 2



[PDF] Intégration et probabilités (cours + exercices corrigés) L3 MASS

1 1 2 Exercices 2 4 1 Intégrales des fonctions mesurables positives 2 2 1 Dans le calcul des mesures, on adopte les conventions de calcul suivantes



[PDF] Analyse - Exo7 - Cours de mathématiques

site Exo7 toutes les vidéos correspondant à ce cours, ainsi que des exercices corrigés Alors n'hésitez plus Intégrales 85 1 L'intégrale de Riemann



[PDF] Cours de Mathématiques L1 Résumé des chapitres - Université de

4 2 Propriétés de l'intégrale de Riemann 4 4 Méthodes de calcul des intégrales [1] Pascal DUPONT Exercices de Mathématiques pour le 1er cycle, vol



[PDF] CALCUL DIFF´ERENTIEL ET ´EQUATIONS DIFF´ERENTIELLES

I - CALCUL DIFFÉRENTIEL Introduction 1 Chapitre 0- Rappels d'alg`ebre Exercices du Chapitre 1 14 4 3 2- Formule de Taylor avec reste intégral 60 Donato, Calcul différentiel pour la licence Cours, exercices et probl`emes résolus



[PDF] Terminale S - Intégrales et primitives - Exercices - Physique et Maths

Primitives et intégrales - Exercices Intégrales et propriétés Exercice 1 On considère les fonctions et g(x)=1−x En utilisant la définition d'une intégrale, calculer 



[PDF] Calculs de primitives - Licence de mathématiques Lyon 1

∫(3 2 − 2 )ln( 2 + 1) Allez à : Correction exercice 25 Exercice 26 A l'aide d'une intégration par partie calculer les intégrales suivantes a

[PDF] calcul d'un rayon de courbure PDF Cours,Exercices ,Examens

[PDF] calcul d'un volume par intégrale PDF Cours,Exercices ,Examens

[PDF] calcul d'une distance entre deux points PDF Cours,Exercices ,Examens

[PDF] calcul d'une periode oscilloscope PDF Cours,Exercices ,Examens

[PDF] calcul d'une proportion PDF Cours,Exercices ,Examens

[PDF] Calcul dans un pavé droit 5ème Mathématiques

[PDF] Calcul dans un repère hortonormé 2nde Mathématiques

[PDF] calcul dde la fonction g 3ème Mathématiques

[PDF] calcul de 3eme 3ème Mathématiques

[PDF] calcul de 5mm dans l'uretère PDF Cours,Exercices ,Examens

[PDF] calcul de base mathématiques PDF Cours,Exercices ,Examens

[PDF] Calcul de bénéfice et inéquation 2nde Mathématiques

[PDF] Calcul de biomasse et productivité primaire 2nde SVT

[PDF] calcul de cate vital 6ème Mathématiques

[PDF] Calcul de célérité de l'onde sonore Terminale Physique

[PDF] Intégration et probabilités (cours   exercices corrigés) L3 MASS

Integration et probabilites

(cours + exercices corriges)

L3 MASS, Universite Nice Sophia Antipolis

version 2021Sylvain Rubenthaler

Table des matieres

Introduction iii

1 Denombrement (rappels) 1

1.1 Ensembles denombrables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theorie de la mesure 5

2.1 Tribus et mesures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Tribus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Mesures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Integrales des fonctions etagees mesurables positives. . . . . . . . . . . . . . . 9

2.4 Fonctions mesurables et integrales . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Integrales des fonctions mesurables positives . . . . . . . . . . . . . . . 10

2.4.2 Integrales des fonctions mesurables de signe quelconque. . . . . . . . . 11

2.5 Fonction de repartition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Ensembles negligeables 17

4 Theoremes limites 21

4.1 Stabilite de la mesurabilite par passage a la limite. . . . . . . . . . . . . . . . 21

4.2 Theoremes de convergence pour les integrales. . . . . . . . . . . . . . . . . . . 22

4.3 Integrales dependant d'un parametre . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Mesure produit et theoremes de Fubini 33

5.1 Theoremes de Fubini et Fubini-Tonelli . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Changement de variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Fondements de la theorie des probabilites 41

6.1 Denitions generales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Esperance d'une v.a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Inegalites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Lois classiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4.1 Lois discretes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4.2 Lois continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 Fonctions caracteristiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.6 Fonctions generatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

i

6.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.7.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.7.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Variables independantes 59

7.1 Denitions generales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1.1Evenements et variables independantes . . . . . . . . . . . . . . . . . 59

7.1.2 Densites de variables independantes . . . . . . . . . . . . . . . . . . . 60

7.2 Lemme de Borel-Cantelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3 Somme de deux variables independantes . . . . . . . . . . . . . . . . . . . . . 62

7.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Convergence de variables aleatoires 71

8.1 Les dierentes notions de convergence . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Loi des grands nombres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.3 Theoreme central-limite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.4.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.4.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9 Conditionnement 83

9.1 Conditionnement discret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.2 Esperance conditionnelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.3 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10 Variables gaussiennes 89

10.1 Denitions et proprietes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.2 Gaussiennes et esperance conditionnelle . . . . . . . . . . . . . . . . . . . . . 90

A Table de la loi normale 93

Introduction

Le but de ce cours est d'introduire les notions de theorie de la mesure qui seront utiles en calcul des probabilites et en analyse. Il est destine aux etudiants qui veulent poursuivre leurs etudes dans un master a composante mathematique. Pour un cours plus complet, se reporter a la bibliographie. Informations utiles (partiels, bar^emes, annales, corriges, ...) : PREREQUIS : Pour pouvoir suivre ce cours, l'etudiant doit conna^tre, entre autres, les developpements limites, les equivalents, les etudes de fonction, le denombrement, les nombre complexes, la theorie des ensembles., les integrales et primitives usuelles, la trigonometrie, etc. Nouveautes 2019 : corrections apportees par Laure Helme-Guizon (Teaching Fellow, UNSW, Sydney, Australia) et Antoine Mal. Un grand merci a eux. iii

Chapitre 1

Denombrement (rappels)

1.1 Ensembles denombrables

Denition 1.1.1.Injection.

SoitE;Fdes ensembles,f:E!Fest une injection si8x;y2E,f(x) =f(y))x=y.

Denition 1.1.2.Surjection.

SoitE;Fdes ensembles,f:E!Fest une surjection si8z2F,9x2Etel quef(x) =z.

Denition 1.1.3.Bijection.

SoitE;Fdes ensembles,f:E!Fest une bijection sifest une injection et une surjection. Proposition 1.1.4.SoientE;F;Gdes ensembles. Soientf:E!F,g:F!G. Alors [f etginjectives])[gfinjective]. Demonstration.Soientx;ytels quegf(x) =gf(y). L'applicationgest injective donc

f(x) =f(y). L'applicationfest injective doncx=y.Denition 1.1.5.On dit qu'un ensembleEest denombrable s'il existe une injection deE

dansN. Dans le cas ouFest inni, on peut alors demontrer qu'il existe alors une bijection deEdansN. (Cela revient a dire que l'on peut compter un a un les elements deE.)

Exemple 1.1.6.Tout ensemble ni est denombrable.

Exemple 1.1.7.Zest denombrable car l'application

f:Z!N n7!(

2nsin>0

2n1sin <0

est bijective (donc injective).01 23-1-2-30 2 4

13Figure1.1 {Enumeration des elements deZ.

1

2CHAPITRE 1. DENOMBREMENT (RAPPELS)

Exemple 1.1.8.NNest denombrable car l'application

f:NN!N (p;q)7!(p+q)(p+q+ 1)2 +q est bijective (donc injective).0 129quotesdbs_dbs2.pdfusesText_2