[PDF] pdf Analyse Num´erique Corrig´e du TD 5 - Côte d'Azur University

2 2 M´ethode de Newton On consid`ere maintenant la m´ethode de Newton pour rechercher ce z´ero a ´etablir sa formule en utilisant un d´eveloppement de Taylor; b faire un dessin pour illuster la m´ethode a Par la formule en utilisant un d´eveloppement de Taylor On se donne x 0 Pour n ? 0 on ´ecrit la formule de Taylor de f(x n+1



Previous PDF Next PDF





Analyse Numérique

Numérique Corrigé du TD 5 EXERCICE 1 Méthode des Par suite, d' apr`es l'exercice 1, la convergence de la méthode de Newton est quadratique pour l'équation x = e−x ,x 



Analyse Numérique

rcices du chapitre 2 4 4 2 5 Méthode des trapèzes corrigés 82 Ceci montre que la méthode de Newton converge de façon quadratique si elle converge



EXAMEN 1 - Corrigé

l'ordre de convergence de la méthode de Newton à partir des 3 itérations obtenues à la question 



Série dexercices no3/5 Résolution numérique déquations non

numérique L2- Printemps 2018 appliquant la méthode de Newton- Raphson à l'équation



Exercices corrigés

éthode est bien d'ordre p Exercice 7 (ordre de convergence de la méthode de Newton) On rappelle 



233 Exercices (méthode de Newton)

xercices (méthode de Newton) Exercice 82 Corrigé en page 184 L' algorithme de Newton pour F(x, y) = (sin(x) + y, xy)t est-il Analyse numérique I, télé-enseignement, L3 175



S2 : Analyse Ch 3 : Résolution numérique déquations (avec

e 1 Vérifiez que les hypoth`eses de la méthode de Newton sont satisfaites sur cet intervalle 2



Analyse numérique Exercices corrigés

: Analyse numérique Corrigé : Rappelons que le polynôme de Lagrange basé sur les points Écrire la méthode de Newton pour cette équation en précisant un bon choix de 



Devoir de révision : la méthode de Newton

imité qu'à partir de l'exercice 2 (Éventuellement, tracez les graphes et lisez le corrigé pour avoir 



pdf Analyse Num´erique Corrig´e du TD 5 - Côte d'Azur University

2 2 M´ethode de Newton On consid`ere maintenant la m´ethode de Newton pour rechercher ce z´ero a ´etablir sa formule en utilisant un d´eveloppement de Taylor; b faire un dessin pour illuster la m´ethode a Par la formule en utilisant un d´eveloppement de Taylor On se donne x 0 Pour n ? 0 on ´ecrit la formule de Taylor de f(x n+1



Devoir de révision : la méthode de Newton - univ-rennes

1)) on construit x 2 puis x 3 Exercice 1 Dessiner la suite de Newton On considère les six fonctions ci-dessous ayant toutes ? = ? 2 pour zéro : f: x 7?x2?2 i: x 7?(x? ? 2)4+1 2 (x? ? 2) g: x 7?x2? ? 3x+( 6?2) j: x 7?1 8 (e 4(x? ? 2)?1) h: x 7?x2?2x+(2 ? 2?2) k: x 7?1 2



Correction - Feuille de TD 2 : Méthodes d’intégration numérique

Correction - Feuille de TD 2 : Méthodes d’intégration numérique Exercice 1 (Une méthode sur [?1 1]) Soient x1 x2 ? [?1 1] x1 < x2 et ?1 ?2 ? R On définit pour toute fonction f continue sur [?1 1] la méthode d’intégration numérique T de la façon suivante :



Analyse Numérique

2 Ecrire la méthode de Newton ourp la fonction f A l'aide du gapher de la fonction f trouver ourp quel zéro l'ordre de onvercgence de la méthode est galé à 2 3 On onsidèrce maintenant la méthode de ointp xe x k+1 = g(x k) avec g(x k) = sin(x k)+ x k 2 (? 6 p 3 2) ourp alculerc le zéro 2 2I 2 Etablir si ettec méthode de ointp xe est



Searches related to analyse numérique exercices corrigés méthode de newton

manière de commencer un cours d’analyse numérique que par un chapitre sur l’étude des erreurs Le logiciel scilab est un très puissant logiciel de calcul numérique de la même famille que les logiciels Matlab ou Octave librement téléchargeable sur scilab

[PDF] analyse numérique exercices et problèmes corrigés pdf

[PDF] analyse numérique matricielle cours et exercices corrigés pdf

[PDF] analyse pestel bricolage

[PDF] analyse pestel castorama

[PDF] analyse s1 smia pdf

[PDF] analyse secteur immobilier maroc

[PDF] analyse spectre rmn

[PDF] analyser un document en svt

[PDF] analyses medicales pdf

[PDF] anatole france belvedere casablanca

[PDF] anatole france casablanca fourniture

[PDF] anatole france college

[PDF] anatole france pronote

[PDF] anatomia corpului uman pdf

[PDF] anatomia omului 3d

Universit´e de Nice Sophia-Antipolis

Licence L3 Math´ematiques Ann´ee 2008/2009Analyse Num´erique

Corrig´e du TD 5EXERCICE 1

M´ethode des approximations successives, ordre de convergence SoientIun intervalle ferm´e deR,g:I→Iune fonction assez r´eguli`ere admettant un point fixel?Ii.e.g(l) =l. On consid`ere une suite des it´er´es suivante ?x

0?Idonn´e,

x n+1=g(xn),?n≥0.(1.1) a. Faire un dessin illustrant la construction de la suite(xn)n≥0. b. Calculer l"erreuren=xn-let donner une condition pour que la m´ethode du point fixe(1.1)soit d"ordrep≥1. On a e n+1=xn+1-l =g(xn)-g(l) = (xn-l)g?(l) +...+(xn-l)p-1(p-1)!g(p-1)(l) +(xn-l)pp!g(p)(cn),(1.2) o`ucnest un r´eel compris entrexnetl. On trouve que la m´ethode des approximations successives converge `a l"ordrepsous la condition : g(k)(l) = 0,?k= 1,...,p-1,pourp >1, et g (p)(l)?= 0,pourp≥1,(1.3) car sous les hypoth`eses (1.3) on a : lim n→+∞x n+1-l(xn-l)p= limn→+∞1p!g(p)(cn) =1p!g(p)(l)?= 0. Cas o`up= 2. En posantM= supx?I???g??(x)???, on peut ´ecrire ??xn-l???2, 1

Universit´e de Nice Sophia-Antipolis

Licence L3 Math´ematiques Ann´ee 2008/2009ce qui peut s"´ecrire encore M2 ??xn-l???? 2

Par r´ecurrence surn, on trouve

M2 ??x0-l???? 2n

10-2n.

Ce qui montre qu"`a chaque it´eration le nombre de d´ecimales exactes double en th´eorie.EXERCICE 2Formules et illustrations graphiques des m´ethodes it´eratives de

recherche des z´eros d"une fonctionOn recherche un z´ero d"une fonction r´eguli`eref:I→Io`uIun intervalle

ferm´e deR.

2.1 M´ethode de dichotomie

Rappeler la m´ethode de dichotomie qui permet d"approcher ce z´ero def.

Faites une illustration graphique.

La m´ethode de dichotomie est bas´ee sur le th´eor`eme suivant : Th´eor`eme 2.1.Soit[a,b]un intervalle ferm´e deRetf: [a,b]→Rune fonction continue.

Sif(a)f(b)<0alors?α?]a,b[tel quef(α) = 0.

On se donne un intervalleI0= [a,b] contenant le z´eroαque l"on veut approcher. La m´ethode de dichotomie produit une suite de sous-intervallesIn= [an,bn],n≥0, avec I n+1?Inet tel quef(an)f(bn)<0. En particulier, on prenda0=a,b0=betx0= a 0+b02 et pourn≥0 :on posean+1=an, bn+1=xnsif(an)f(xn)<0, ouan+1=xn, bn+1=bnsif(xn)f(bn)<0, etxn+1=an+1+bn+12 .(2.1) 2

Universit´e de Nice Sophia-Antipolis

Licence L3 Math´ematiques Ann´ee 2008/20092.2 M´ethode de Newton On consid`ere maintenant la m´ethode de Newton pour rechercher ce z´ero. a. ´etablir sa formule en utilisant un d´eveloppement de Taylor; b. faire un dessin pour illuster la m´ethode. a.Par la formule en utilisant un d´eveloppement de Taylor On se donnex0. Pourn≥0, on ´ecrit la formule de Taylor def(xn+1enxn, soit f(xn+1) =f(xn) +f?(xn)(xn+1-xn) + (xn+1-xn)ε(xn+1),(2.2) avec lim xn+1→xnε(xn+1) = 0. On n´eglige le terme (xn+1-xn)ε(xn+1), on suppose quef?(xn) inversible et on cherche x n+1tel quef(xn+1) = 0, d"o`u la m´ethode de Newton ?x

0donn´e,

x n+1=xn-f(xn)f ?(xn),?n≥0. b.G´eom´etriquementxn+1est l"abscisse du point d"intersection de la tangente enxn`a la courbe defet l"axe des abscisses.EXERCICE 3

Un exemple

3.1

Soit l"´equation

x=e-x,x?[0,+∞[.(3.1) a. On consid`ere la m´ethode it´erative suivante ?x

0?[0,+∞[ donn´e,

x n+1=e-xn,?n≥0.(3.2) Montrer que la m´ethode(3.2)est convergente six0est bien choisi. Donner dans ce cas l"ordre de convergence.

Posonsg(x) =e-x.

Clairement 0 n"est pas solution de l"´equation (3.1). Pourx?]0,+∞[,g?(x) =-e-x, donc |g?(x)|<1 ce qui implique quegest contractante sur ]0,+∞[. Comme ]0,+∞[ est un

ouvert, le th´eor`eme du point fixe ne s"applique pas. Il faut trouver un ferm´e [a,b]?]0,+∞[,

tel queg([a,b])?[a,b]. 3

Universit´e de Nice Sophia-Antipolis

g([1/10,1])?[1/10,1] par continuit´e degsur [1/10,1]. Comme|g?(x)|<1 sur le ferm´e [1/10,1] de ]0,+∞[, on peut appliquer le th´eor`eme du point fixe. Il existel?[1/10,1] tel quel=g(l).

Ordre de convergence

Commeg?(c) =-e-c?= 0, la m´ethode est convergente `a l"ordre 1. b. Appliquer la m´ethode de Newton `a l"´equation(3.1)et montrer que la convergence est quadratique. Pour appliquer la m´ethode de Newton `a l"´equation (3.1), on poseh(x) =x-e-x. Comme h ?(x) = 1 +e-x?= 0 sur ]0,+∞[, la m´ethode de Newton pour l"´equationh(x) = 0 s"´ecrit ??x

0?[110

,1] donn´e, x n+1=xn-h(xn)h ?(xn),?n≥0, ou encore ?x

0?[110

,1] donn´e, x n+1=xn-xn-e-xn1 +e-xn,?n≥0.

Ordre de convergence

La fonctionh(x) =x-e-xestC2. Soitαla racine dehque l"on souhaite approcher par la m´ethode de Newton. Cette m´ethode peut se mettre sous la forme : ?x

0donn´e,

x n+1=φ(xn),?n≥0, o`uφest donn´ee par

φ(x) =x-h(x)h

?(x). On a ?(x) = 1-(h?(x))2-h(x)h??(x)(h?(x))2=h(x)h??(x)(h?(x))2. et donc ?(α) =h(α)h??(α)(h?(α))2= 0, carh(α) = 0. 4

Universit´e de Nice Sophia-Antipolis

Licence L3 Math´ematiques Ann´ee 2008/2009De l"expression de la d´eriv´ee seconde ??(x) =(h?(x))3h??(x) +h(x)h(3)(x)(h?(x))2-2h(x)h?(x)(h??(x))2(h?(x))4, il vient ??(α) =h??(α)h ?(α)=-e-α1 +e-α?= 0. Par suite, d"apr`es l"exercice 1, la convergence de la m´ethode de Newton est quadratique pour l"´equationx=e-x,x?[0,+∞[. 3.2 Montrer que l"´equationx=-ln(x),x?]0,+∞[admet une solution unique.

Montrer que la m´ethode it´erative

?x

0?]0,+∞[ donn´e,

x n+1=-lnxn,?n≥0,(3.3) diverge. Proposer une m´ethode d"approximation de la solution.

Posonsf(x) =-ln(x).

La fonctionfest d´erivable sur ]0,+∞[ et sa fonction d´eriv´ee estx?→f?(x) =-1/x. La

fonctionfest donc d´ecroissante sur ]0,+∞[. Comme limx→0f(x) = +∞etf(1) = 0, le point

fixe defsur l"intervalle ]0,+∞[ est localis´e dans le segment ouvert ]0,1[. Sur le segment ouvert ]0,1[, on a|f?(x)|>1, mˆeme en prenant un intervalle ferm´e [a,b]?

]0,1[, la suite (xn)n≥0construite `a partir de la formule (3.3) diverge. En effet, pourn≥0,

il existe un r´eelξentrexnetltel que x n+1-l=f(xn)-f(l) =f?(ξ)(xn-l), et donc

Par r´ecurrence on obtient

???xn-l???>???xn-1-l???> ... >???x1-l???>???x0-l???.

D"o`u la m´ethode it´erative (3.3) diverge.

Une autre m´ethode d"approximation de la solution On cherche `a r´esoudrex=-ln(x) sur ]0,+∞[. En prenant l"exponentielle de cette derni`ere

´egalit´e on obtient

x=e-x,x?[0,+∞[. C"est l"´equation (3.1) du d´ebut de cet exercice. La m´ethode (3.1) permet d"approcher la solution de l"´equationx=-ln(x) sur ]0,+∞[. 5

Universit´e de Nice Sophia-Antipolis

Licence L3 Math´ematiques Ann´ee 2008/2009EXERCICE 4

Points fixes attractif, r´epulsif

SoientIun intervalle ferm´e deR,φ:I→Iune fonctionC1(I)admettant un point fixea?Ii.e.φ(a) =a. On consid`ere une suite des it´er´es suivante ?x

0?Idonn´e,

x n+1=φ(xn),?n≥0.(4.1) a. On suppose que|φ?(a)|<1.

Soitktel que|φ?(a)|< k <1. Montrer que :

x?→φ?(x) est continue ena:

En prenantε=k- |φ?(a)|>0, on a

Par in´egalit´e triangulaire, on trouve

Ce qui donne le r´esultat demand´e.

Prouver queφ([a-h,a+h])?[a-h,a+h]et que?x0?[a-h,a+h], la suite (xn)n≥0donn´ee par la formule(4.1)converge versa. On a •φest continue sur [a-h,a+h]; •φest d´erivable sur [a-h,a+h];

D"apr`es le th´eor`eme des accroissements,

Commeφ(a) =a, la relation (4.3) s"´ecrit

ce qui signifie que

φ([a-h,a+h])?[a-h,a+h].

6

Universit´e de Nice Sophia-Antipolis

Licence L3 Math´ematiques Ann´ee 2008/2009Convergence de la suite(xn)n≥0dans[a-h,a+h]pourx0?[a-h,a+h]

L"intervalle [a-h,a+h] est un ferm´e deR, c"est un espace complet. Commeφ([a-h,a+ h])?[a-h,a+h] etφest une application contractante de rapport 0< k <1, la suite des it´er´es ayant pour valeur initialex0?[a-h,a+h] converge vers le pointa?[a-h,a+h]. b. On suppose|φ?(a)|>1. Peut-on utiliser l"algorithme(4.1)pour approchera? Puisque|φ?(a)|>1, si applique l"algorithme (4.1) `aφpour approchera, la m´ethode diverge (voir l"exercice 3.2). On montre `a pr´esent que l"on peut quand mˆeme utiliser l"algorithme(4.1)pour approcher a. Comme la fonctionx?→φ?(x) est continue ena, •Siφ?(a)>0, alors on prendε=φ?(a)2 et doncφ?(a)2 i.e. ?h >0?x?[a-h,a+h], φ?(x)>0 tout commeφ?(a).(4.6) •Siφ?(a)<0, alors on prendε=-φ?(a)2 et donc3φ?(a)2 i.e. ?h >0?x?[a-h,a+h], φ?(x)<0 tout commeφ?(a).(4.7) Tout ceci pour dire que?h >0 tel queφ?a le mˆeme signe queφ?(a)?= 0 sur [a-h,a+h]. Sur [a-h,a+h],φest donc une bijection et on peut d´efinirφ-1.

Comme (φ-1)?(φ(a)) = 1/φ?(a) etφ(a) =a, on a (φ-1)?(a) = 1/φ?(a). De (φ-1)?(a) =

1/φ?(a)<1, on peut appliquer lea.de cet exercice `aφ-1pour approchera.

c. On suppose maintenant que|φ?(a)|= 1. En prenantφ(x) = sin(x),x?[0,π/2],a= 0puisφ(x) =sh(x),x?[0,+∞[,a= 0, conclure.

Cas o`uφ(x) = sin(x),x?[0,π/2],a= 0

On aφ(0) = 0 donc 0 est point fixe deφ(x) = sin(x) sur [0,π/2]. On a ´egalement |φ?(0)|= cos(0) = 1 et?x?]0,π/2],|φ?(x)|=|cos(x)|<1, donc la m´ethode des it´er´es successifs converge?x0?]0,π/2] et m˜Aame pourx0= 0. 7quotesdbs_dbs48.pdfusesText_48