[PDF] [PDF] Cours de Mathématiques - Unisciel

16 sept 2010 · 2 4 2 Interprétationen terme d'aire Deux méthodes de calcul de la distance d' un point à un plan Il fut l'auteur de deux ouvrages majeurs en mathématiques Soit un nombre complexe z ∈ C On appelle racine carrée de z une tales Remarque 4 11 La représentation de valeurs particulières 



Previous PDF Next PDF





[PDF] Grandeurs et mesures - Plan détudes romand

Mesure des dimensions adéquates, calcul du périmètre et de l'aire d'un polygone , de En mathématiques, il s'attacha notamment à développer le système de 



[PDF] Cours complet de mathématiques pures par L - Gallica - BnF

sonnes peu versées dans les Mathématiques, des Géographes, des Marins, Aires'des courbes planes, 728, j62, 8o5 -Sec- tions coniques,cycloïde 8o5 ,,780 Méthodede Carré (figure), 23i de l'hypoté- nuse, 217 Règles du calcul arithmétique 8 de trois ,75 tale dont 5 est le chiffre initial;cette case porte 35, eton a



[PDF] MATHÉMATIQUES - Numdam

O Sa valeur est égale au carré de la différence des nombres a et b, divisé par le produit des du triangle, divisent son aire en deux parties équivalentes, Professeur de mathématiques spéciales au collège royal de Saint-Omer Quand on cherche et au moyen de ces formules on peut calculer les valeurs de ces rayons 



[PDF] mathématiques 8

d'apprentissage en mathématiques que les élèves dans les écoles françaises précisait ce que l'enseignant devait faire, le résultat décrit ce que l'élève démontrer une habileté en calcul mental et en estimation; Représenter un carré parfait donné sous forme d'une région consulter la FRO 16 : Tale de multiplication



[PDF] Problèmes ouverts et/ou à modéliser au lycée - lycée laroche

Problème 2: Dans quelle situation l'aire du carré est égale à celle du triangle ? – Problème écrire un algorithme permettant de calculer une valeur approchée de la longueur de la courbe C représentant f → écrire Northrop, E P Fantaisies et paradoxes mathématiques, traduit par (prolongement en Tale S spécialité)



[PDF] Cours de Mathématiques - Unisciel

16 sept 2010 · 2 4 2 Interprétationen terme d'aire Deux méthodes de calcul de la distance d' un point à un plan Il fut l'auteur de deux ouvrages majeurs en mathématiques Soit un nombre complexe z ∈ C On appelle racine carrée de z une tales Remarque 4 11 La représentation de valeurs particulières 



[PDF] Le calcul dans la joie

sité d'Ottawa : il contient les explications mathématiques de plusieurs con- L' aire de chaque petit carré est donc 1 91 A = 1 tale obtenue `a partir d'un carré



[PDF] MATHÉMATIQUES DISCRÈTES - Institut de Mathématiques de

MATHÉMATIQUES DISCRÈTES Mathieu SABLIK VII 4 4 Comment calculer un nombre chromatique? Démonstration : On peut faire une preuve directe de ce résultat L'ensemble des carrés peut donc s'écrire comme une union disjointe : A = A1 ∪ A2 ∪ A3 ∪ A4 tale dans un plan sans que les arêtes se croisent



[PDF] 199 défis (mathématiques) à manipuler

mathématiques ou des expositions mathématiques itinérantes, trouvés dans des livres ou sur Place dans le carré les quatre triangles pour faire apparaître • d 'une part en partant de 10, tu arrives, au fil des calculs, à 20 ; • en partant de 



[PDF] Télécharger la version pdfgz - Institut de Mathématiques de Bordeaux

Il ne s'agit pas seulement d'un cours de mathématiques de base, mani`ere de calculer ne serait-ce que le produit par trois de la racine carrée de deux sa version géométrique, une relation entre les aires des carrés construits sur les variabile reale, vel tempore, tale que trajectoria de puncto mobile ple toto spatio

[PDF] Calculer l'aire des terrains 3ème Mathématiques

[PDF] Calculer l'aire du carré EFGH avec le théorème de Pythagore 3ème Mathématiques

[PDF] Calculer l'aire du drapeau de la Savoie 5ème Mathématiques

[PDF] Calculer l'aire du drapeau de savoie 5ème Mathématiques

[PDF] Calculer l'aire du quadrilatére AECF ( C'est un devoirs maison de 3iéme ) 3ème Mathématiques

[PDF] Calculer l'aire du triangle 4ème Mathématiques

[PDF] Calculer l'aire du triangle ABC 4ème Mathématiques

[PDF] Calculer l'aire du triangle ABV 4ème Mathématiques

[PDF] Calculer l'aire en fonction de ; 3ème Mathématiques

[PDF] Calculer l'aire et l'image 3ème Mathématiques

[PDF] Calculer l'aire et le périmètre d'un rectangle 5ème Mathématiques

[PDF] Calculer l'aire et le volume 2nde Mathématiques

[PDF] calculer l'aire et le volume d'une boule 3ème Mathématiques

[PDF] Calculer l'aire et le volume de ces solides 4ème Mathématiques

[PDF] calculer l'aire latérale d'un prisme droit 5ème Mathématiques

Cours de Mathématiques

Sup MPSI PCSI PTSI TSI

En partenariat avec l'association Sésamath http://www.sesamath.net et le site http://www.les-mathematiques.net Document en cours de relecture (fin des relectures, décembre2010) Alain Soyeur - François Capaces - Emmanuel Vieillard-Baron

16 septembre 2010

Table des matières1 Nombres complexes18

1.1 Le corpsCdes nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 18

1.1.1 Un peu de vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 18

1.1.2 Construction deC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.3 Propriétés des opérations surC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Parties réelle, imaginaire, Conjugaison . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Partie réelle, partie imaginaire d'un nombre complexe . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.2 Conjugaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 20

1.3 Représentation géométrique des complexes . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.1 Représentation d'Argand . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 21

1.3.2 Interprétation géométrique de quelques opérations .. . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Module d'un nombre complexe, inégalités triangulaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Nombres complexes de module1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.1 GroupeUdes nombres complexes de module1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.2 Exponentielle imaginaire . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 25

1.6 Argument, fonction exponentielle complexe . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6.1 Argument d'un nombre complexe . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 29

1.6.2 Fonction exponentielle complexe . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 30

1.7 Racinesn-ièmes de l'unité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 31

1.8 Équations du second degré . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 34

1.8.1 Racines carrées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 34

1.8.2 Équations du second degré . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 34

1.9 Nombres complexes et géométrie plane . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 35

1.9.1 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 35

1.9.2 Barycentre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 36

1.9.3 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 36

1.10 Transformations remarquables du plan . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 36

1.10.1 Translations, homothéties . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 37

1.10.2 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 37

1.10.3 Similitudes directes . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 37

1.11 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 41

1.11.1 Forme algébrique - Forme trigonométrique . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 41

1.11.2 Polynômes, équations, racines de l'unité . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 42

1.11.3 Application à la trigonométrie . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 48

1.11.4 Application des nombres complexes à la géométrie . . .. . . . . . . . . . . . . . . . . . . . . . . . 52

1.11.5 Transformations du plan complexe . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 58

2 Géométrie élémentaire du plan61

2.1 Quelques notations et rappels . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 61

2.1.1 Addition vectorielle . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 62

2.1.2 Produit d'un vecteur et d'un réel . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 62

2.1.3 Vecteurs colinéaires, unitaires . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 62

2.1.4 Droites du plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 63

2.2 Modes de repérage dans le plan . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 63

2.2.1 Repères Cartésiens . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 63

2.2.2 Changement de repère . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 66

2

Équation cartésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 67

2.2.3 Repères polaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 67

Equation polaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 69

2.3 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 69

2.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 69

2.3.2 Interprétation en terme de projection . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 69

2.3.3 Propriétés du produit scalaire . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 70

2.3.4 Interprétation en termes de nombres complexes . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 71

2.4 Déterminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 71

2.4.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 71

2.4.2 Interprétation en terme d'aire . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 72

2.4.3 Propriétés du déterminant . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 72

2.4.4 Interprétation en terme de nombres complexes . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 73

2.4.5 Applicationdudéterminant: résolutiond'unsystèmelinéairede Cramer dedeuxéquationsà deux

inconnues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 73

2.5 Droites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 74

2.5.1 Préambule : Lignes de niveau . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 74

2.5.2 Lignes de niveau deMu.AM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.5.3 Lignes de niveau deMdet

u,AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.5.4 Représentation paramétrique d'une droite . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 75

2.5.5 Équation cartésienne d'une droite . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 76

2.5.6 Droite définie par deux points distincts . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 77

2.5.7 Droite définie par un point et un vecteur normal . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 77

2.5.8 Distance d'un point à une droite . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 77

2.5.9 Équation normale d'une droite . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 78

2.5.10 Équation polaire d'une droite . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 79

2.5.11 Intersection de deux droites, droites parallèles . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.6 Cercles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 80

2.6.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 80

2.6.2 Équation cartésienne d'un cercle . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 80

2.6.3 Représentation paramétrique d'un cercle . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 81

2.6.4 Équation polaire d'un cercle passant par l'origine d'un repère . . . . . . . . . . . . . . . . . . . . . 82

2.6.5 Caractérisation d'un cercle par l'équationMA.MB0. . . . . . . . . . . . . . . . . . . . . . . . . 82

2.6.6 Intersection d'un cercle et d'une droite . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 83

2.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 86

2.7.1 Produit scalaire et déterminant . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 86

2.7.2 Coordonnées cartésiennes dans le plan . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 87

2.7.3 Géométrie du triangle . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 94

2.7.4 Cercle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 98

2.7.5 Coordonnées polaires . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 108

2.7.6 Lignes de niveaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 110

3 Géométrie élémentaire de l'espace112

3.1 Préambule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 112

3.1.1 Combinaisons linéaires de vecteurs, droites et plansdans l'espace . . . . . . . . . . . . . . . . . . 112

3.1.2 Vecteurs coplanaires, bases . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 113

3.1.3 Orientation de l'espace, base orthonormale directe .. . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.2 Mode de repérage dans l'espace . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 115

3.2.1 Coordonnées cartésiennes . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 115

Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 115

Calcul algébrique avec les coordonnées . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 115

Norme d'un vecteur, distance entre deux points dans un repère orthonormé . . . . . . . . . . . . . 116

3.2.2 Coordonnées cylindriques et sphériques . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 117

3.3 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 118

3.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 118

3.3.2 Expression dans une base orthonormale . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 119

3.3.3 Propriétés du produit scalaire . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 119

3.4 Produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 120

3.4.1 Définition du produit vectoriel . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 120

3.4.2 Interprétation géométrique du produit vectoriel . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 121

3

3.4.3 Propriétés du produit vectoriel . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 121

Interlude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 121

Quelques exemples d'applications linéaires fort utiles pour ce qui vient... . . . . . . . . . . . . . . 122

3.4.4 Expression dans une base orthonormale directe . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 123

3.5 Déterminant ou produit mixte . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 123

3.5.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 123

3.5.2 Expression dans une base orthonormale directe . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 123

3.5.3 Propriétés du produit mixte . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 124

3.5.4 Interprétation géométrique . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 125

3.6 Plans dans l'espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 126

3.6.1 Représentation paramétrique des plans . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 126

3.6.2 Représentation cartésienne . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 126

Interprétation géométrique de l'équation normale . . . . . . .. . . . . . . . . . . . . . . . . . . . . 127

Position relative de deux plans . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 128

3.6.3 Distance d'un point à un plan . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 128

Deux méthodes de calcul de la distance d'un point à un plan . . .. . . . . . . . . . . . . . . . . . 129

3.7 Droites dans l'espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 130

3.7.1 Représentation paramétrique . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 130

3.7.2 Représentation cartésienne . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 130

3.7.3 Distance d'un point à une droite . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 131

3.7.4 Perpendiculaire commune à deux droites . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 131

3.8 Sphères . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 133

3.8.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 133

3.8.2 Sphères et plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 134

3.8.3 Sphères et droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 134

3.9 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 135

3.9.1 Produits scalaire, vectoriel et mixte . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 135

3.9.2 Coordonnées cartésiennes dans l'espace . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 137

3.9.3 Sphères . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 146

4 Fonctions usuelles150

4.1 Fonctions logarithmes, exponentielles et puissances .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.1.1 Logarithme népérien . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 151

4.1.2 Exponentielle népérienne . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 153

4.1.3 Logarithme de base quelconque . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 155

4.1.4 Exponentielle de basea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.1.5 Fonctions puissances . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 157

4.1.6 Comparaison des fonctions logarithmes, puissances et exponentielles . . . . . . . . . . . . . . . . 159

4.2 Fonctions circulaires réciproques . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 159

4.2.1 Rappels succints sur les fonctions trigonométriques. . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.2.2 Fonction Arcsinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 160

4.2.3 Fonction Arccosinus . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 162

4.2.4 Fonction Arctangente . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 164

4.3 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 165

4.3.1 Définitions et premières propriétés . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 165

Sinus et Cosinus hyperboliques . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 165

Tangente hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 167

4.3.2 Formulaire de trigonométrie hyperbolique . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 168

4.3.3 Fonctions hyperboliquesinverses . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 168

Fonction argument sinus hyperboliqueargsh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Fonction Argument cosinus hyperboliqueargch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Fonction Argument tangente hyperboliqueargth. . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.4 Deux exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 172

4.5 Fonction exponentielle complexe . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 175

4.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 177

4.6.1 Fonctions exponentielles, logarithmes et puissances . . . . . . . . . . . . . . . . . . . . . . . . . . 177

4.6.2 Fonctions circulaires . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 183

4.6.3 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 192

4

5 Equations différentielles linéaires197

5.1 Quelques rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 197

5.2 Deux caractérisations de la fonction exponentielle . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.2.1 Caractérisation par une équation différentielle . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 197

5.2.2 Caractérisation par une équation fonctionnelle . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.3 Équation différentielle linéaire du premier ordre . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.3.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 198

5.3.2 Résolution de l'équation différentielle homogène normalisée . . . . . . . . . . . . . . . . . . . . . 199

5.3.3 Résolution de l'équation différentielle normaliséeavec second membre . . . . . . . . . . . . . . . 201

5.3.4 Détermination de solutions particulières . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 202

Superposition des solutions . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 202

Trois cas particuliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 202

Méthode de variation de la constante . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 204

5.3.5 Cas général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 205

5.3.6 Méthode d'Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 208

5.4 Équations différentielles linéaires du second ordre . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

5.4.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 208

5.4.2 Résolution de l'équation différentielle homogène dusecond ordre dansC. . . . . . . . . . . . . . 209

5.4.3 Résolution de l'équation différentielle homogène dusecond ordre dansR. . . . . . . . . . . . . . 211

5.4.4 Équation différentielle du second ordre avec second membre . . . . . . . . . . . . . . . . . . . . . 212

5.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 216

5.5.1 Équations différentielles linéaires du premier ordre . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

5.5.2 Équations différentielles linéaires du second ordreà coefficients constants . . . . . . . . . . . . . . 220

5.5.3 Résolution par changement de fonction inconnue . . . . .. . . . . . . . . . . . . . . . . . . . . . . 221

5.5.4 Résolution d'équations différentielles par changement de variable . . . . . . . . . . . . . . . . . . 223

5.5.5 Application aux équations différentielles linéaires du premier ordre avec problèmes de raccord

des solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 224

5.5.6 Divers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 226

6 Étude des courbes planes229

6.1 Fonctions à valeurs dansR2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.1.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 229

6.1.2 Dérivation du produit scalaire et du déterminant . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 231

6.2 Arcs paramétrés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 232

6.2.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 232

6.2.2 Étude locale d'un arc paramétrée . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 232

Étude d'un point stationnaire avec des outils de terminale .. . . . . . . . . . . . . . . . . . . . . . 233

Étude d'un point stationnaire avec les développements limités . . . . . . . . . . . . . . . . . . . . 233

Branches infinies des courbes paramétrées . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 236

6.2.3 Étude complète et tracé d'une courbe paramétrée . . . . .. . . . . . . . . . . . . . . . . . . . . . . 239

6.3 Etude d'une courbe polairef(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

6.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 243

6.3.2 Etude d'une courbef(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

6.3.3 La cardioïde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 244

6.3.4 La strophoïde droite . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 245

6.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 247

6.4.1 Fonctions vectorielles . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 247

6.4.2 Courbes en coordonnées cartésiennes . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 247

6.4.3 Courbes polaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 262

7 Coniques269

7.1 Définitions et premières propriétés . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 270

7.1.1 Définition monofocale . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 270

7.1.2 Équation cartésienne d'une conique . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 270

7.1.3 Équation polaire d'une conique . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 271

7.2 Étude de la parabole :e1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

7.3 Étude de l'ellipse :0e1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

7.4 Étude de l'hyperbole :1e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

7.5 Définition bifocale de l'ellipse et de l'hyperbole . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

7.6 Courbes algébriques dans le plan . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 280

7.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 284

5

7.7.1 En général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 284

7.7.2 Paraboles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 284

7.7.3 Ellipses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 286

7.7.4 Hyperboles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 289

7.7.5 Courbes du second degré . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 292

8 Nombres entiers naturels, ensembles finis, dénombrements301

8.1 Ensemble des entiers naturels - Récurrence . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 301

8.1.1 Ensemble des entiers naturels . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 301

8.1.2 Principe de récurrence . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 302

8.1.3 Suite définie par récurrence . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 303

8.1.4 Notationset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

8.1.5 Suites arithmétiques et géométriques . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 304

8.2 Ensembles finis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 305

8.2.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 305

8.2.2 Propriétés des cardinaux . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 305

8.2.3 Applications entre ensembles finis . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 307

8.3 Opérations sur les ensembles finis . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 307

8.4 Dénombrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 308

8.4.1 Applications d'un ensemble fini dans un ensemble fini . .. . . . . . . . . . . . . . . . . . . . . . . 308

Nombre dep-listes d'un ensemble fini . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 308

Nombre d'applications d'un ensemble fini dans un ensemble fini . . . . . . . . . . . . . . . . . . . 309

Arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 309

Combinaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 310

8.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 314

8.5.1 Principe de récurrence . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 314

8.5.2 Sommes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 319

8.5.3 Produit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 321

8.5.4 Factoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 322

8.5.5 Coefficients binomiaux, calculs de somme . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 323

8.5.6 Dénombrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 328

9 CorpsRdes nombres réels335

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 335

9.2 Le corps des réels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 336

9.3 Valeur absolue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 337

9.4 Majorant, minorant, borne supérieure . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 338

9.5 Droite numérique achevée

R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

9.6 Intervalles deR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 340

9.7 Propriété d'Archimède . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 340

9.8 Partie entière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 341

9.9 Densité deQdansR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

9.10 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 343

9.10.1 Inégalités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 343

9.10.2 Borne supérieure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 344

9.10.3 Rationnels, irrationnels, densité . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 346

9.10.4 Partie entière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 349

10 Suites de nombres réels350

10.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 350

10.1.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 350

10.1.2 Opérations sur les suites . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 350

10.2 Convergence d'une suite . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 352

10.2.1 Suites convergentes, divergentes . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 352

10.3 Opérations algébriques sur les limites . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 353

10.3.1 Limites et relations d'ordre . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 355

10.3.2 Limites infinies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 357

10.4 Suite extraite d'une suite . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 358

10.5 Suites monotones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 359

10.5.1 Théorème de la limite monotone . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 359

10.5.2 Suites adjacentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 360

6

10.5.3 Approximation décimale des réels . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 361

10.5.4 Segments emboités et théorème de Bolzano-Weierstrass . . . . . . . . . . . . . . . . . . . . . . . . 361

10.6 Suites arithmétiques et géométriques . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . 362

10.7 Relations de comparaison . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 364

10.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 364

10.7.2 Suite dominée par une autre . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 364

10.7.3 Suite négligeable devant une autre . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 365

10.7.4 Suites équivalentes . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 366

10.8 Comparaison des suites de référence . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 367

10.9 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 370

10.9.1 Avec les définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 370

10.9.2 Convergence,divergence de suites . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 372

10.9.3 Relations de comparaison . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 376

10.9.4 Suites monotones et bornées . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 381

10.9.5 Sommes géométriques . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 386

10.9.6 Suites adjacentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 386

10.9.7 Suites extraites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 390

10.9.8 Suites équivalentes . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 392

10.9.9 Étude de suites données par une relation de récurrence . . . . . . . . . . . . . . . . . . . . . . . . . 403

10.9.10Étude de suites définies implicitement . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 407

11 Fonctions d'une variable réelle à valeurs réelles408

11.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 408

11.1.1 L'ensembleF(I,R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

11.1.2 Fonctions bornées . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 409

11.1.3 Monotonie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 410

11.1.4 Parité périodicité . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 410

11.1.5 Fonctions Lipschitzienne . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 411

11.2 Limite et continuité en un point . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 412

11.2.1 Voisinage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 412

11.2.2 Notion de limite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 412

11.2.3 Opérations algébriques sur les limites . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 415

11.2.4 Continuité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 416

11.2.5 Limite à gauche, à droite, continuité à gauche, à droite . . . . . . . . . . . . . . . . . . . . . . . . . 417

11.2.6 Limites et relation d'ordre . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 418

11.2.7 Théorème de composition des limites . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 419

11.2.8 Image d'une suite par une fonction . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 420

quotesdbs_dbs7.pdfusesText_13