[PDF] [PDF] ALG`EBRE LIN´EAIRE Module 2 PAD - Exercices - PédagoTech de

2 jan 2009 · 1-1 Exercices corrigés 2-1 1 Exercice 4a – Formes bilinéaires et quadratiques 15 2-1 2 Exercice 5a – Réduction en somme de carrés q en somme algébrique de carrés en utilisant la méthode de Gauss 2



Previous PDF Next PDF





[PDF] CAPES Exercices Corrigés Formes quadratiques

Exercices Corrigés Formes Exercice 1 Soit B une forme bilinéaire sur un espace vectoriel réel V et Nous allons e ectuer une réduction de Gauss de q On a



[PDF] Exercices pour le 30 Avril Exercice 1

Corrigé Exercice 1 Soit Q : R4 → R l'application définie par : Q(x1,x2,x3,x4)=2x2 Pourquoi Q est-elle une forme quadratique ? C'est donc bien une forme quadratique sur R4 2 Quelle On applique la méthode de la réduction de Gauss



[PDF] Corrigé du devoir surveillé no1

Exercice I Soit q: R3 → R la forme quadratique définie par la formule La réduction de Gauß obtenue `a la question précédente a fait apparaıtre trois formes 



[PDF] ALG`EBRE LIN´EAIRE Module 2 PAD - Exercices - PédagoTech de

2 jan 2009 · 1-1 Exercices corrigés 2-1 1 Exercice 4a – Formes bilinéaires et quadratiques 15 2-1 2 Exercice 5a – Réduction en somme de carrés q en somme algébrique de carrés en utilisant la méthode de Gauss 2



[PDF] Formes bilinéaires et formes quadratiques, orthogonalité Cours

Réduction par complétion des carrés (Méthode de Gauss) 34 3 Examen de rattrappage dialgèbre 4, Juin 2017 49 Corrigé type de liexamen gèbre 4 qui traite le sujet de la réduction des formes quadratiques (la diagonalisation des algebra, http ://www albany edu/gmark/numlin pdf , January 31,( 2012), 1$15



[PDF] Feuille dexercices n 2

Pour chacune des formes bilinéaires suivantes, calculer sa matrice M1 dans la Appliquer la réduction de Gauss aux formes quadratiques suivantes afin de les



[PDF] Daniel Alibert - Cours et exercices corrigés - volume 10 - Walanta

Il s'agit d'un livre d'exercices corrigés, avec rappels de cours Il ne se substitue en Si q est la forme quadratique associée à une forme bilinéaire de matrice A, alors : q(x) = tXAX exercice 3 1) Décomposer, par la méthode de Gauss, les formes quadratiques donc, après réduction de l'expression : a 2 tr(M)tr(M')− a 2



[PDF] Corrigé (succinct) du contrôle continu du 27 novembre - Ceremade

27 nov 2017 · Exercice 1 (questions de cours) 1 Énoncer le théorème de réduction des formes quadratiques Soit q une forme Exercice 2 (une forme bilinéaire) Effectuer une réduction de Gauss des formes quadratiques suivantes et 



[PDF] Correction de quelques exercices de la feuille no 5: Formes

forme bilinéaire symétrique sur E Montrer que la forme quadratique associée `a ψ est définie positive Utilisation du procédé d'orthogonalisation de Gauss:



[PDF] TP 1 : réduction des formes quadratiques 1 Cas générique

Une mani`ere d'obtenir cette écriture est d'appliquer la méthode de Gauss : on proc`ede en éliminant les variables successivement La forme l1 comportera a 

[PDF] signature forme quadratique

[PDF] frequence genotypique definition

[PDF] réduction des endomorphismes et des matrices carrées

[PDF] position d amour pdf

[PDF] moyenne rapport couple 25 ans

[PDF] frequence rapport couple 60 ans

[PDF] frequence 2m tnt

[PDF] frequence arriadia tnt sur nilesat startimes

[PDF] sujet concours reduction endomorphisme

[PDF] onde radio vitesse

[PDF] ondes radio fm

[PDF] fréquences des notes de musique en hertz

[PDF] longueur d'onde des notes de musique

[PDF] fréquence note piano

[PDF] octave fréquence

ALG

Module 2

PAD - Exercices

January 2, 2009

Table des Matiµeres

1 Espaces euclidiens 1

3

1-1.1 Exercice 1a - Produit scalaire . . . . . . . . . . . . . . . . . . . .

3

1-1.2 Exercice 2a. Orthogonalisation. . . . . . . . . . . . . . . . . . . .

4

1-1.3 Exercice 3a - Matrices orthogonales . . . . . . . . . . . . . . . . .

6

1-2 Exercices avec indications seulement . . . . . . . . . . . . . . . . . . . .

8

1-2.1 Exercice 1b - Produit scalaire . . . . . . . . . . . . . . . . . . . .

8 8

1-2.3 Exercice 3b - Produit scalaire . . . . . . . . . . . . . . . . . . . .

9

1-3 Devoir µa rendre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

1-3.1 Exercice 1c - Produit scalaire . . . . . . . . . . . . . . . . . . . .

11 11

1-3.3 Exercice 3c - Produit scalaire . . . . . . . . . . . . . . . . . . . .

12 15 15 19

2-1.3 Exercice 6a { Forme quadratique . . . . . . . . . . . . . . . . . .

21

2-2 Exercices avec indications seulement . . . . . . . . . . . . . . . . . . . .

24

2-2.1 Exercice 4b { Forme quadratique . . . . . . . . . . . . . . . . . .

24

2-2.2 Exercice 5b { Forme quadratique . . . . . . . . . . . . . . . . . .

24
25

2-3 Devoir µa rendre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26
26

2-3.2 Exercice 5c { Forme quadratique . . . . . . . . . . . . . . . . . .

26

2-3.3 Exercice 6c { Diagonalisation des endomorphismes

27
31

3-1.1 Exercice 7a { Projection orthogonale . . . . . . . . . . . . . . . .

31
32

3-1.3 Exercice 9a { Polyn^omes de Legendre . . . . . . . . . . . . . . . .

35
i iiTABLE DES MATIµERES

3-2 Exercices avec indications seulement . . . . . . . . . . . . . . . . . . . .

40

3-2.1 Exercice 7b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40
40
42

3-3 Devoir µa rendre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

3-3.1 Exercice 7c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

3-3.2 Exercice 8c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45

3-3.3 Exercice 9c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

46

Chapitre 2

13 2-1 2-1.1 1. f

1(x;y) = 2x1y1+ 2x2y2+ 2x3y3¡x1y2¡x2y1¡x1y3¡x3y1¡x2y3¡x3y2

f

2(x;y) = 2x1y1+ 2x2y2+ 2x3y3+x1y2+x2y1+x1y3+x3y1+x2y3+x3y2

f

3(x;y) = 2x1y1+ 2x2y2+ 2x3y3+ 2x1y2+ 2x1y3+ 2x2y3

(a) deR3. (b) (c) (d) 2. A=0 @2¡1 0

¡1 2¡1

0¡1 21

A dans la base canonique deR3. (a) (b) En partant des vecteurs de la base canoniquefe1;e2;e3g, et en utilisant le f-orthogonale. 1. canonique deR3: f

1(x;y) = 2x1y1+ 2x2y2+ 2x3y3¡x1y2¡x2y1¡x1y3¡x3y1¡x2y3¡x3y2

¡x1x2x3¢0

@2¡1¡1

¡1 2¡1

¡1¡1 21

A0 @x 1 x 2 x 31
A f

2(x;y) = 2x1y1+ 2x2y2+ 2x3y3+x1y2+x2y1+x1y3+x3y1+x2y3+x3y2

¡x1x2x3¢0

@2 1 1 1 2 1

1 1 21

A0 @x 1 x 2 x 31
A f

3(x;y) = 2x1y1+ 2x2y2+ 2x3y3+ 2x1y2+ 2x1y3+ 2x2y3

¡x1x2x3¢0

@2 2 2 0 2 2

0 0 21

A0 @x 1 x 2 x 31
A q

1(x) = 2x21+ 2x22+ 2x23¡2x1x2¡2x1x3¡2x2x3

q

2(x) = 2x21+ 2x22+ 2x23+ 2x1x2+ 2x1x3+ 2x2x3

q

3(x) = 2x21+ 2x22+ 2x23+ 2x1x2+ 2x1x3+ 2x2x3

On a :

q

1(x) = 2³

x

1¡x2

2

¡x3

2 2+3 2 (x2¡x3)2 f

1n'est pas un produit scalaire.

Faisons de m^eme pourq2:

q

2(x) =x21+x22+x23+ (x2+x1+x3)2

qui est bien positive.

Supposons :q2(x) = 0 on a :

8>>< >:x 21= 0
x 22= 0
x 23= 0
(x2+x1+x3)2= 0 de m^eme pourf2puisqueq2=q3 produit scalaire. 2. (a) La matriceA=0 @2¡1 0

¡1 2¡1

0¡1 21

A f(x;y) = 2x1y1+ 2x2y2+ 2x3y3¡x1y2¡x2y1¡x2y3¡x3y2 et q(x) = 2x21+ 2x22+ 2x23¡2x1x2¡2x2x3 q(x) = 2x21+ 2(x22¡x1x2¡x2x3) + 2x23= 2(x2¡1 2 x1¡1 2 x3)2+3 2 x21+3 2 x23¡x1x3 ou encore : q(x) = 2(x2¡1 2 x1¡1 2 x3)2+3 2 (x21¡2 3 x1x3) +3 2 x23

Finalement :

q(x) = 2(x2¡1 2 x1¡1 2 x3)2+3 2 (x1¡1 3 x3)2+4 3 x23

Donc pour toutx, on aq(x)¸0:

De plus

q(x) = 0,8 :(x2¡1 2 x1¡1 2 x3)2= 0 3 2 (x1¡1 3 x3)2= 0 4 3 x23= 0 8< :(x2¡1 2 x1¡1 2 x3) = 0 3 2 (x1¡1 3 x3) = 0 x

3= 0,8

:x 2= 0 x 1= 0 x 3= 0 scalaire. (b) Nous pouvons ainsi, en partant des vecteurs de la base canoniquefe1;e2;e3g, et f-orthogonale. f-orthogonal µau1:On doit avoir : f(au1+e2;u1) = 0 soit :a=¡f(e2;u1) q(u1) avec f(e2;u1) = (1;0;0)0 @2¡1 0

¡1 2¡1

0¡1 21

A0 @0 1 01quotesdbs_dbs42.pdfusesText_42