[PDF] [PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Exercice 9 – (extrait partiel novembre 2011) 1) En utilisant l'algorithme du cours, montrer que la matrice suivante est inversible et préciser son inverse : A = ( 1 2



Previous PDF Next PDF





[PDF] Les tableaux 1 Exercice 1 - LIPN

Correction du T D 2 Ecrire les algorithmes permettant : 1 Le calcul du nombre Ecrire l'algorithme qui calcule le produit de deux matrices carées réelles A =



[PDF] Exercices avec Solutions

Les Tableaux (Vecteurs – Matrices) et Chaines de caractères Exercices Corrigés d'Algorithmique – 1ére Année MI 5 EXERCICE 1 Ecrire un algorithme qui demande un nombre à l'utilisateur, puis calcule et affiche le carré de ce nombre



[PDF] Chapitre 4 : Tableaux et matrices 1 Tableaux

Exercice 1 : Ecrire un algorithme qui permet de lire les valeurs d'un tableau de 50 entiers puis de calculer la somme de ses éléments Utiliser 



[PDF] Correction des exercices de travaux dirigés Exercice 1 - IUTenligne

Chapitre 8 : tableaux à deux dimensions Correction des exercices de travaux dirigés Exercice 1 : notes (somme de lignes et de colonnes) 1 (mat 1) 2 (mat 2)



[PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Exercice 9 – (extrait partiel novembre 2011) 1) En utilisant l'algorithme du cours, montrer que la matrice suivante est inversible et préciser son inverse : A = ( 1 2



[PDF] Tableaux - CORRIGE - grug

Algorithmique et programmation procédurale - TD No 3 Exercice 1 A partir de deux tableaux précédemment saisis, écrivez un algorithme qui le produit de 2 matrices qui sont représentées par 2 tableaux à deux dimensions Corrigé



[PDF] TD : Complexité des algorithmes

a) La matrice est représentée par un tableau à deux dimensions dont les cases contiennent les éléments algorithme permettant de calculer cette somme, pour chacune des deux représentations, puis de PROPOSITION DE CORRIGE



[PDF] - Série Bac Info Corrigé - Exercice 2: - DevoirTN

Exercice 1: Mise à zéro de la diagonale principale d'une matrice 1) Ecrire une analyse et un algorithme d'une fonction intitulée Somme_ligne qui permet de



[PDF] Algorithmique I - École normale supérieure de Lyon

Ce polycopié rassemble les cours et travaux dirigés (avec corrigés) du Types de Données et Algorithmes, le livre de Froidevaux, Gaudel et Soria [4], pour l' and analysis of algorithms, contient les notes de cours et exercices (certains corrigés) d'un cours étend les matrices avec des 0 `a la puissance de 2 supérieure :



[PDF] Algorithmes et structures de données : TD 5 Corrigé - LaBRI

Déterminer la fonction de temps maximale (”worst case”) T(n) pour des matrices de taille n • Dans la boucle intérieur : Une affectation j:=j+1, une comparaison j < = 

[PDF] exercice corrigé algorithme programmation pdf

[PDF] exercice corrigé algorithme tableau pdf

[PDF] exercice corrigé analyse financière esg

[PDF] exercice corrigé analyse swot

[PDF] exercice corrigé audit interne

[PDF] exercice corrigé batterie

[PDF] exercice corrigé c++ classe

[PDF] exercice corrigé calcul d'erreur

[PDF] exercice corrigé calcul de ph

[PDF] exercice corrigé champ magnétique crée par un solénoide

[PDF] exercice corrigé chiffre d'affaire prévisionnel

[PDF] exercice corrigé chimie organique licence

[PDF] exercice corrigé chimie organique mecanisme reactionnel

[PDF] exercice corrigé choix d'investissement en avenir incertain

[PDF] exercice corrigé cinématique du point matériel pdf

Exercices Corriges

Matrices

Exercice 1{Considerons les matrices a coecients reels :

A= 2 1

2 1! ; B= 1 2 24!
C=0 B @1 1 2 1 0 1 11 01 C

A; D=0

B @11 1 1 0 1

0 1 01

C

A; E= 11 1

1 0 1!

Si elles ont un sens, calculer les matricesAB,BA,CD,DC,AE,CE.

Exercice 2{(extrait partiel novembre 2011)

On considere les matrices a coecients reels :

A= 1 1

1 1!

B= 431

2 1 1!

C= 1 2

12! Calculer, s'ils ont un sens, les produitsAB;BA;AC;CA;B2. Exercice 3{On considere les matrices a coecients reels :

A= 1 3

2 4!

B= 431

2 1 1!

C= 43 2 1!

1) Calculer s'ils ont un sens les produitsAB;BA;AC;CA;BC;CB;B2.

2) En deduire, sans plus de calcul, queAetCsont inversibles et preciser leurs inverses.

Exercice 4{SoitAla matrice deM2(R) etBla matrice deM2;3(R) denies par :

A= 4 3

1 1! ; B= 1 0 2 1 11! Si elles ont un sens, calculer les matricesAB,BA,A2,B2etA+ 2Id2.

Exercice 5{SoitA;B;Cles matrices :

A= 22 0

4 22!

2M2;3(R); B=0

B @1 1 1 2 131
C

A2M3;2(R); C= 11

1 2!

2M2;2(R)

Determiner les produits denis 2 a 2 de ces trois matrices. Exercice 6{Ti;j() etant la matrice elementaire qui correspond a ajouter a la ligneile produit parde la ligne j, preciser la matriceT2;1(12 ) deM2;2(R), puis la matriceT1;2(2)T2;1(12 1 Exercice 7{1) Preciser les matrices elementaires deM3;3(R) : D

2(2); T3;2(3); T2;1(2):

2) Calculer la matriceA=T3;2(3)D2(2)T2;1(2).

3) DonnerA1sous forme de produit de matrices elementaires. Puis, calculerA1.

Exercice 8{Appliquer avec precision aux matricesMetNsuivantes l'algorithme du cours qui determine si une matrice est inversible et donne dans ce cas son inverse : M= 23 11!

2M2;2(R)et N= 23

46!

2M2;2(R):

Exercice 9{(extrait partiel novembre 2011)

1) En utilisant l'algorithme du cours, montrer que la matrice suivante est inversible et preciser

son inverse :

A= 1 2

3 4!

2) Puis, donner une expression deA1et deAcomme produit de matrices elementaires.

Exercice 10{1) Appliquer avec precision l'algorithme du cours pour inverser la matrice : M= 11 23!

2M2;2(R):

2 ) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

Exercice 11{) Appliquer avec precision l'algorithme du cours pour inverser la matrice :

M= 2 1

3 2!

2M2;2(R):

Preciser une expression deM1, puis deMcomme produit de matrices elementaires. Exercice 12{SoitAetBdeux matrices carrees de m^eme ordre, on suppose que la matrice ABest inversible d'inverse la matriceC. Montrer alors queBest inversible et preciserA1.

Exercice 13{(extrait partiel novembre 2011)

SoitXetYdeux matrices carrees non nulles de m^eme taille a coecients reels, montrer que siXY= 0, les matricesXetYne sont pas inversibles.

Exercice 14{SoitM=0

B @2 4 1 2 5 1

1 2 11

C A.

1) Montrer en appliquant les algorithmes du cours queMest inversible. Preciser la matrice

M

1ainsi que la decomposition deM1comme produit de matrices elementaires.

2

2) En deduire une decomposition deMcomme produit de matrices elementaires.

3) Montrer que nous avons aussiM=T2;3(1)T1;3(1)T3;1(1)T2;1(1)T1;2(2).

4) En deduire une deuxieme expression deM1comme produit de matrices elementaires.

5) Calculer det(M) et retrouver la valeur deM1en utilisant la formule d'inversion donnee

dans le cours.

Exercice 15{(extrait partiel novembre 2009)

1) Appliquer avec precision l'algorithme du cours pour determiner l'inverseM1de la matrice :

M=0 B @1 2 3 0 1 2

0 4 61

C

A2M3;3(R):

Quelle est la valeur deM1?

2) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

3) Deduire de la question 1 une matriceXdeM3;3(R)telle que :

2XM=0 B @1 0 0 0 1 0 02 11 C A: Exercice 16{1) Appliquer avec precision l'algorithme du cours pour determiner l'inverse M

1de la matrice :

M=0 B @1 2 3 0 1 1

0 2 31

C

A2M3;3(R):

2) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

3) Verier le calcul en eectuant les calculs des matricesMM1etM1M.

Exercice 17{SoitMla matrice deM3(R) denie par :

M=0 B @1 01 2 3 4

0 1 11

C A:

1) Calculer le determinant deM, sa comatrice et l'inverse deM.

2) Determiner l'inverse deMsous forme de produit de matrices elementaires. EcrireMcomme

produit de matrices elementaires.

3) Resoudre a l'aide de l'inverse deMle systeme suivant oumest un reel xe :

(m)2 6 4x 1x3=m

2x1+ 3x2+ 4x3= 1

+x2+x3= 2m: 3

Correction de l'exercice 1 :

Le lecteur veriera que :

AB= 0 0

0 0! ; BA= 6 3 126!
CD=0 B @0 1 2 1 0 1 21 01
C

A; DC=0

B @123 2 0 2

1 0 11

C

A; AE= 12 3

12 3! Le produitCEn'a pas de sens car la taille des colonnes (a savoir 2) deEest dierent de la taille des lignes (a savoir 3) deC.

Correction de l'exercice 2 :

On trouve :

AB= 22 0

22 0!

AC= 0 0

2 0!

CA= 3 3

33!

Les deux autres produitsB2etBAn'ont pas de sens.

Correction de l'exercice 3 :

1)

AB= 2 0 2

02 2! BAn'a pas de sens car la taille des lignes deBn'est pas egale a celle des colonnes deA.

AC= 2 0

02! =2Id2:

CA= 2 0

02! =2Id2:

CB= 22157

10 7 3!

BCn'a pas de sens car la taille des lignes de deBn'est pas egale a celle des colonnes deC. B

2n'a pas de sens car la taille des lignes de deBn'est pas egale a celle des colonnes deB.

2) Nous avons :AC=CA=2Id2, nous en deduisons :

A(12

C) = (12

C)A= Id2:

Il en resulte que la matriceAest inversible, d'inverse : A 1=12

C= 232

112
4

De m^eme :

(12

A)C=C(12

A) = Id2:

Il en resulte que la matriceCest inversible, d'inverse : C 1=12 A= 12 32
12!

Correction de l'exercice 4 :

AB= 7 311

2 13!

La matriceBAn'a pas de sens.

A

2=AA= 139

32!

La matriceB2n'a pas de sens.

A+ 2Id2= 4 3

1 1! + 2 1 0 0 1! = 2 3 1 3!

Correction de l'exercice 5 :

AB= 02

4 14! ; BA=0 B @6 02 10 24

108 61

C

A; CA= 24 2

10 24!

BC=0 B @2 1 3 3 271
C

A; C2= 03

3 3!

Les matricesAC,CB,A2etB2ne sont pas denis.

Correction de l'exercice 6 :

T

2;1(12

) =T2;1(12 )I2=T2;1(12 ) 1 0 0 1! = 1 0 12 1! De m^eme, en utilisant les proprietes des actions a gauche par les matrices elementaires, on obtient : T

1;2(2)T2;1(12

) =T1;2(2) 1 0 12 1! = 02 12 1!

Correction de l'exercice 7 :

1.1) 5 D

2(2) =D2(2)I3=D2(2)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 02 0

0 0 11

C A: T

3;2(3) =T3;2(3)I3=T3;2(3)0

B @1 0 0 0 1 0

0 0 11

quotesdbs_dbs18.pdfusesText_24