[PDF] [PDF] PRODUIT SCALAIRE - maths et tiques

Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853 I Définition et propriétés 1) Norme d'un vecteur Définition : Soit un vecteur u



Previous PDF Next PDF





[PDF] Tronc Commun Série 1 : Produit scalaire - Moutamadrisma

BC , calculer BC et en déduire la valeur de AI Exercice 3 : Soit ABC un triangle, tel que : 6 AB = , 5



[PDF] LE PRODUIT SCALAIRE APPLICATIONS DU PRODUIT SCALAIRE

Le produit scalaire, introduit au dix-neuvième siècle par Grassman et Support : exercices n° 3 + 11 + 12 + 13 (définition / théorème de projection) Support 



[PDF] Exercices sur le produit scalaire - Lycée dAdultes

17 mai 2011 · 2) Démontrer que E1 et E2 ont deux points communs si, et seulement si : 0



[PDF] Exercices corrigés - Achamel

Exercice 1 : produit scalaire en fonction des coordonnées de vecteurs dans un repère orthonormé • Exercice 2 : propriétés du produit scalaire (règles de calcul  



[PDF] Produit Scalaire - Tronc Commun - AlloSchool

Tronc Commun Série 1 : Produit Scalaire Corrigé de l'exercice 1 : 1 ⊳ D'après le théorème d'Al-kashi , on a : ä ( ) 2 2 2 2 cos BC AB AC AB AC BAC = +



[PDF] Tronc Commun Mathématiques

II 1 2 Divers emplois du produit scalaire dans le plan Le principal objet d' étude du cours de Tronc Commun de Mathématiques est la notion de La plupart des fonctions que l'on consid`ere dans ce polycopié ou dans les exercices sont



[PDF] PRODUIT SCALAIRE - maths et tiques

Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853 I Définition et propriétés 1) Norme d'un vecteur Définition : Soit un vecteur u



[PDF] Produit scalaire

En déduire l'angle (non orienté) entre u et v 5 Faire de même avec v et w Exercice 3 Dans l'espace, soit les points A(1, 2 



[PDF] tronc commun agricole - taalimona Mathématiques

Le programme de mathématiques du Tronc Commun Professionnel est le même pour les deux Troncs Sans oublier le rôle des exercices à fixer les savoirs et les habiletés Introduire le produit scalaire et ses propriétés à partir de la

[PDF] exercice programmation 3eme informatique

[PDF] exercice programmation step 7

[PDF] exercice programmation step 7 pdf

[PDF] exercice programmation vba excel

[PDF] exercice propagation d'une onde le long d'une corde

[PDF] exercice propagation du son

[PDF] exercice puissance 3ème

[PDF] exercice puissance 3ème pdf

[PDF] exercice puissance brevet

[PDF] exercice puissance de 10 3ème

[PDF] exercice puissance de 10 4ème

[PDF] exercice puissance de 10 ecriture scientifique

[PDF] exercice pyramide et cone de revolution

[PDF] exercice pythagore 3eme

[PDF] exercice pythagore 3eme pdf

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPRODUIT SCALAIRE La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre. Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853. I. Définition et propriétés 1) Norme d'un vecteur Définition : Soit un vecteur

u et deux points A et B tels que u =AB . La norme du vecteur u , notée u , est la distance AB. 2) Définition du produit scalaire Définition : Soit u et v deux vecteurs du plan. On appelle produit scalaire de u par v , noté u .v , le nombre réel définit par : - u .v =0 , si l'un des deux vecteurs u et v est nul - u .v =u ×v

×cosu

;v , dans le cas contraire. u .v se lit " u scalaire v ". Remarque : Si AB et AC sont deux représentants des vecteurs non nuls u et v alors : u .v =AB .AC =AB

×AC

×cosBAC

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frExemple : Vidéo https://youtu.be/CJxwKG4mvWs Soit un triangle équilatéral ABC de côté a.

AB .AC =AB

×AC

×cosBAC

=a×a×cos60° =a 2

×0,5

a 2 2 Attention : Le produit scalaire de deux vecteurs est un nombre réel. Ecrire par exemple u .v =0

est une maladresse à éviter ! 3) Propriété de symétrie du produit scalaire Propriété : Pour tout vecteur

u et v , on a : u .v =v .u

Démonstration : On suppose que

u et v sont non nuls (démonstration évidente dans la cas contraire). u .v =u ×v

×cosu

;v =v ×u

×cosu

;v =v ×u

×cos-v

;u =v ×u

×cosv

;u =v .u

4) Opérations sur les produits scalaires Propriétés : Pour tous vecteurs

u v et w , on a : 1) u .v +w =u .v +u .w 2) u .kv =ku .v , avec k un nombre réel. - Admis -

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 5) Identités remarquables Propriétés : Pour tous vecteurs

u et v , on a : 1) u +v 2 =u 2 +2u .v +v 2 2) u -v 2 =u 2 -2u .v +v 2 3) u +v u -v =u 2 -v 2

Démonstration pour le 2) :

u -v 2 =u -v u -v =u .u -u .v -v .u +v .v =u 2 -2u .v +v 2

II. Produit scalaire et norme Soit un vecteur

u , on a : u .u =u ×u

×cosu

;u =u 2

×cos0=u

2 et u .u =u 2

On a ainsi :

u 2 =u .u =u 2

Propriété : Soit

u et v deux vecteurs. On a : u .v 1 2 u 2 +v 2 -u -v 2 et u .v 1 2 u +v 2 -u 2 -v 2

Démonstration de la première formule :

u -v 2 =u -v 2 =u 2 -2u .v +v 2 =u 2 -2u .v +v 2 donc u .v 1 2 u 2 +v 2 -u -v 2

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPropriété : Soit A, B et C trois points du plan. On a :

AB .AC 1 2 AB 2 +AC 2 -BC 2

Démonstration :

AB .AC 1 2 AB 2 +AC 2 -AB -AC 2 1 2 AB 2 +AC 2 -CB 2 1 2 AB 2 +AC 2 -BC 2

Exemple : Vidéo https://youtu.be/GHPvfaHnysg

CG .CF 1 2 CG 2 +CF 2 -GF 2 1 2 6 2 +7 2 -3 2 =38 III. Produit scalaire et orthogonalité 1) Vecteurs orthogonaux Propriété : Les vecteurs u et v sont orthogonaux si et seulement si u .v =0

. Démonstration : Si l'un des vecteurs est nul, la démonstration est évidente. Supposons le contraire.

u .v =0 ⇔u ×v

×cosu

;v =0 ⇔cosu ;v =0

Les vecteurs

u et v sont orthogonaux

5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 2) Projection orthogonale Définition : Soit une droite d et un point M du plan. Le projeté orthogonal du point M sur la droite d est le point d'intersection H de la droite d avec la perpendiculaire à d passant par M. Propriété : Soit

u et v deux vecteurs non nuls du plan tels que u =OA et v =OB . H est le projeté orthogonal du point B sur la droite (OA). On a : u .v =OA .OB =OA .OH

Démonstration :

OA .OB =OA .OH +HB =OA .OH +OA .HB =OA .OH

En effet, les vecteurs

OA et HB sont orthogonaux donc OA .HB =0 . Exemple : Vidéo https://youtu.be/2eTsaa2vVnI Soit un carré ABCD de côté c. AB .AC =AB .AB =AB 2 =c 2 IV. Produit scalaire dans un repère orthonormé Le plan est muni d'un repère orthonormé O;i ;j . Propriété : Soit u et v deux vecteurs de coordonnées respectives x;y et x';y' . On a : u .v =xx'+yy' . Démonstration : u .v =xi +yj .x'i +y'j =xx'i .i +xy'i .j +yx'j .i +yy'j .j =xx'i 2 +xy'i .j +yx'j .i +yy'j 2 =xx'+yy' car i =j =1 , le repère étant normé, et i .j =j .i =0

le repère étant orthogonal. Exemple : Vidéo https://youtu.be/aOLRbG0IibY Vidéo https://youtu.be/cTtV4DsoMLQ Soit

u 5;-4 et v -3;7 deux vecteurs. u .v =5×-3 +-4

×7=-15-28=-43

quotesdbs_dbs1.pdfusesText_1