[PDF] [PDF] Ch 1 Ensembles et dénombrement I Ensembles II Cardinaux

Cette formule n'est valable que lorsque les événe- peut calculer la probabilité de leur intersection en condi- tionnant successivement grâce `a la formule :



Previous PDF Next PDF





[PDF] Chapitre 2: Les généralités du calcul des probabilités - LMPT

formule de l'intersection permet de calculer des probabilités sans avoir à faire référence explicitement à l'espace (Ω,J,P) qui modélise l'expé- rience aléatoire et  



[PDF] Seconde - Calcul de probabilités - Apimaths

Calcul de probabilités L'intersection de A et B est l'événement noté A ⋂ B formé des issues qui réalisent A ) + p ( A ) = 1 en appliquant la formule vue au 3)



[PDF] Chapitre 3 Évènements et probabilités

que l'on dispose d'une formule exprimant PpEq en fonction des PpEnq Le calcul de probabilités de réunions ou d'intersections est une question cruciale La



[PDF] Cours de probabilités discr`etes - Maths ECE

Dans le calcul de probabilité d'une intersection, (formule des probabilités composées) la probabilité conditonnelle apparaıtra le condition- nement qui donnera 



[PDF] Probabilités conditionnelles - Maths-francefr

Si on veut à partir de cet arbre calculer la probabilité d'une intersection Cette dernière formule est connue sous le nom de formule des probabilités totales



[PDF] Ch 1 Ensembles et dénombrement I Ensembles II Cardinaux

Cette formule n'est valable que lorsque les événe- peut calculer la probabilité de leur intersection en condi- tionnant successivement grâce `a la formule :



[PDF] PROBABILITES - maths et tiques

On inscrit sur l'arbre des possibles les probabilités des différentes issues L' intersection des évènements A et B est l'évènement : « On tire le valet de cœur Méthode : Calcul de probabilité en utilisant la formule de probabilité d'une réunion

[PDF] comment calculer p(a)

[PDF] diviser des puissances de 10

[PDF] méthode de horner factorisation d'un polynôme

[PDF] méthode de horner exercices

[PDF] methode de horner pdf

[PDF] methode de horner algorithme

[PDF] horner method

[PDF] méthode de horner exercice corrigé

[PDF] schema de horner

[PDF] algorithme de horner python

[PDF] seuil de rentabilité cours pdf

[PDF] méthode des couts variables exercices corrigés

[PDF] exercice seuil de rentabilité corrigé pdf

[PDF] levier opérationnel calcul

[PDF] représentation graphique du seuil de rentabilité

[PDF] Ch 1 Ensembles et dénombrement I Ensembles II Cardinaux

Ch 1. Ensembles et d´enombrementI. EnsemblesD´efinition 1Un ensemble est une collection de choses

qu"on appelle´el´ements. L"ensemble vide est not´e∅. Dans la suite, on consid`erera toujours un ensemble universel Ω(on lit"grand om´ega"), et tous les ensembles consid´er´es seront des parties deΩ. On noteP(Ω)l"ensemble des parties deΩ. Exemple. D´efinition 2SoientAetBdeux ensembles. On d´efinit : -A?B, l"union deAetB, est l"ensemble des´el´ements qui sont dansAou dansBou dans les deux. -A∩B, l"intersection deAetB, est l"ensemble des´el´e- ments qui sont dansAet dansB. -A\B, la diff´erenceAmoinsB, est l"ensemble des´el´e- ments qui sont dansA, mais pas dansB. -AΔB, la diff´erence sym´etrique deAetB, l"ensemble des´el´ements qui sont soit dansAsoit dansB, mais pas dansA∩B. -Acou A, le compl´ementaire deA, l"ensemble des´el´e- ments qui ne sont pas dansA. 1 On repr´esente graphiquement, d´es que c"est possible, les ensembles grˆace`ades diagrammes de Venn.

Proposition 3Premi`eres relations :

- commutativit´e:A∩B=B∩A,A?B=B?A. - associativit´e:A∩(B∩C) = (A∩B)∩C=

A∩B∩C,A?(B?C) = (A?B)?C=A?B?C.

- distributivit´e:(A?B)∩C= (A∩C)?(B∩C),

A?(B∩C) = (A?B)∩(A?C).

-(A?B)c=Ac∩Bc,(A∩B)c=Ac?Bc

Proposition 4 (R`egles de De Morgan)

n? i=1A i? ∩B=n? i=1(Ai∩B) n? i=1A i? ?B=n? i=1(Ai?B) n? i=1A i? c=n? i=1Aci,? n? i=1A i? c=n? i=1Aci

D´efinition 5SoientAetBdeux ensembles. On pose

C={(a,b) :a?A,b?B}. On appelleCl"ensemble

produit deAetBet on le noteA×B. 2 (exemples, g´en´eralisation) v´erifie les deux conditions : -Ai∩Aj=∅pour tousi?=j n? i=1A i= Ω (exemples, g´en´eralisation) D´efinition 7SoitA?Ω. On d´efinit surΩla fonction indicatrice deA,1lA, par : ?ω?Ω,1lA(ω) =?1siω?A

0sinon

(exemple) 3

II. Cardinaux

D´efinition 8SoitAun ensemble fini. Le cardinal deA, not´e|A|, est le nombre d"´el´ements que contientA. (exemple)

Proposition 9Additivit´e

SoientAetBdeux ensembles finis, disjoints (c"est-`a-dire

A∩B=∅). Alors

|A?B|=|A|+|B|

Proposition 10Multiplicativit´e

SoientAetBdeux ensembles finis, etC=A×B. Alors

|C|=|A| · |B| (preuve)

Corollaire 11Principe du d´enombrement

On r´ealise deux exp´eriences qui peuvent produire respec- tivementnetmr´esultats diff´erents. Au total, pour les deux exp´eriences prises ensemble, il existen.mr´esultats possibles. Corollaire 12SoitAun ensemble fini de cardinaln. Le nombre de suites de longueurrconstitu´ees d"´el´ements de

Aestnr.

4

Proposition 13 (Inclusion-exclusion)SoientAetB

deux ensembles finis. |A?B|=|A|+|B| - |A∩B| Plus g´en´eralement, pournensembles finisA1,...,An, |A1? ··· ?An|=n? i=1|Ai| -? iIII. D´enombrement D´efinition 14SoitAun ensemble fini. Une permutation deAest une mani`ere d"ordonner, d"arranger les´el´ements deA. La formulation math´ematique est : une permutation deAest une bijection deAdansA. Th´eor`eme 15Il y an!permutations d"un ensemble de cardinaln. preuve : clair par le principe du d´enombrement.♣ exemple : combien existe-t-il d"anagrammes de PROBA? 5 Th´eor`eme 16Soientnobjets distinguables. Le nombre de permutations derobjets, pris parmi lesnobjets, est A r n=n! (n-r)! (on dit aussi arrangement derobjets pris parmin) preuve :pour la premi`ere place, il y anobjets possibles, pour la seconde,(n-1)objets possibles, pour la derni`ere,(n-r+ 1)objets possibles. Au total,n(n-1)...(n-r+ 1)possibilit´es, par le principe du d´enombrement.♣ Th´eor`eme 17Le nombre de mani`eres de choisirp´el´e- ments parmin(sans tenir compte de l"ordre) est n p?=n! p!(n-p)! Autrement dit, c"est le nombre de parties`ap´el´ements pris parmin´el´ements. On appelle parfois ces parties des combinaisons dep´el´ements pris parmin. preuve : on regarde le nombre de permutations de cesp ´el´ements et on obtientp!arrangements. Il y a doncp!fois plus d"arrangements que de combinaisons.♣ 6

Proposition 181)?n

p?=?n n-p? 2) ?n p?=?n-1 p?+?n-1 p-1?

3)(x+y)n=?np=0?n

p?xpyn-p Corollaire 19SoitΩun ensemble fini de cardinaln. Le cardinal deP(Ω)vaut2n. preuve : il existe 1 partie`a0´el´ement, il existenparties`a1´el´ement, il existe?n p?parties`ap´el´ements, il existe 1 partie`an´el´ements.

Finalement, le nombre total de parties est

n p=0? n p?=n? p=0? n p?1r1n-r= (1 + 1)n= 2n Th´eor`eme 20On consid`erenobjets, parmi lesquelsn1 sont indistinguables,...,nrsont aussi indistinguables. Le nombre de permutations diff´erentes estn! n1!···nr! exemple : combien d"anagrammes de STAT? 4!/2!=12 7 exemple :r´esultat du loto (6 num´eros). - mani`ere de voir 1 : on regarde en direct le tirage du loto et on obtient un arrangement de 6 nombres pris dans {1,...,49}. On a alorsω= (x1,...,x6): les 6 nom- bres sortis avec leur ordre d"arriv´ee. Quel est le nombre de tirages diff´erents? A 6

49= 49?48?47?46?45?44 = 10.068.347.520

Mais on peut gagner les 6 bons num´eros quel que soit l"or- dre de sortie des 6 num´eros... - mani`ere de voir 2 : on regarde les 6 nombres sortis sans s"occuper de l"ordre d"arriv´ee.On a alorsω={x1,...,x6}. D"o`uΩest l"ensemble des combinaisons de 6 nombres pris dans{1,...,49}.

Quel est le nombre de tirages diff´erents?

49

6?=49?48?47?46?45?44

6?5?4?3?2= 13.983.816

remarque :(1,2,3,4,5,6)?= (2,1,3,4,5,6), mais {1,2,3,4,5,6}={2,1,3,4,5,6} 8

Ch 2. Le mod`ele probabiliste

I. Ensemble fondamental et ´ev´ene-

ments D´efinition 21Une exp´erience al´eatoire est une action, une proc´edure, qui donne un r´esultat impr´evisible, mais dont on connaˆıt pr´ecis´ement l"ensemble des r´esultats pos- sibles. Cet ensemble, not´eΩ, est appel´eensemble fonda- mental ou univers ou ensemble des possibles.

Exemples :

- lancer d"un d´e. On observera un r´esultatk? {1,...,6}. - sondageaupr`es de 1000 utilisateursd"un t´el´ephoneportable.

On observera le nombre d"abonn´es`aorange.

- questionnaire`a100 r´eponses binaires. On observera des suitesωde 100 r´eponses prisesdans{0,1};ω? {0,1}100. - parcours d"un taxi. On observera une fonction continue (trajectoire). - mise en service d"un ordinateur. On observera sa dur´ee de fonctionnement qui appartient`aR+. 9 D´efinition 22Onappelle´ev´enement´el´ementairetout´el´e- mentωdeΩ. C"est un r´esultat possible de l"exp´erience al´eatoire. On appelle´ev´enement toute partie deΩ. Pour d´esigner des´ev´enements, on utilisera souvent des let- tres capitales du d´ebut de l"alphabet (A,B,...). Exemples : - on lance un d´e. AlorsΩ ={1,...,6}. L"´ev´enementA:"on obtient un chiffre pair"est consti- tu´edes trois´ev´enements´el´ementaires 2, 4 et 6. On a :

A={2,4,6}.

- on lance trois fois une pi`ece de monnaie. Il est bon que les´ev´enements´el´ementaires d´ecrivent le plus pr´ecis´ement possible le r´esultat de cette exp´erience. On choisit donc de d´ecrireωpar un triplet(r1,r2,r3)qui donne les r´esul- tats des trois lancers (dans l"ordre). L"´ev´enementB:"on obtient pile au deuxi`eme lancer"est

B={(f,p,f),(f,p,p),(p,p,f),(p,p,p)}

Il n"est parfois pas n´ecessaire de connaˆıtre tous ces d´etails. On pourra aussi choisir :ωrepr´esente le nombre de"face" obtenus. Alors,Ω ={0,1,2,3}. Le mod`ele est beau- coup plus simple, mais ne permet pas de d´ecrire des´ev´ene- ments tels queB. Et les calculs qui vont suivre ne sont pas forc´ement simples, eux. Il existe plusieurs mani`eres de mod´eliser l"ensemble fonda- mental. Le choix du mod`ele est un des aspects difficiles de ce cours. 10

Vocabulaire probabiliste

Nous allons manipuler des ensembles, mais en utilisant un vocabulaire propre aux probabilit´es. Si le r´esultatωde l"exp´erience al´eatoire appartient`aA, on dit queωr´ealiseA, ou queAest r´ealis´e. Ainsi,Ω, qui est toujours r´ealis´e, est appel´e ´ev´enement certain. Et∅, qui n"est jamais r´ealis´e, est appel´e ´ev´enement impossible.

SiAetBsont deux´ev´enements,

-A?Bse dit"AimpliqueB"(car siAest r´ealis´e,B aussi), -A?Bse dit"AouB"(car siA?Best r´ealis´e,Aou

Best r´ealis´e),

-A∩Bse dit"AetB", -Acest l"´ev´enement contraire deA, -A∩B=∅se dit"AetBsont incompatibles", ou encore disjoints. Exemple : On lance un d´e. On poseΩ ={1,...,6}. Soit Al"´ev´enement"on obtient un chiffre pair". Le contraire de A,Ac, est l"´ev´enement"on obtient un chiffre impair". 11

II. Probabilit´es

Pensez`aquelques phrases de la vie courante qui conti- ennent le mot"probabilit´e". On constate qu"on parle tou- jours de la probabilit´ed"un´ev´enement. Consid´erons donc un´ev´enementA. Que repr´esente la probabilit´edeA, not´ee

P(A)? Il existe plusieurs mani`eres de voir.

- Proportion : On lance un d´e. Quelle est la probabilit´edeA="obtenir un chiffre pair"? Chaque face du d´ea la mˆeme chance, et il y en a 6. Quant aux chiffres pairs, ils sont 3. D"o`u, intuitivement,P(A) =3

6= 1/2.

- Fr´equence : On lance une pi`ece de monnaie. Quelle est la probabilit´e d"obtenir FACE? On lance une pi`ece un grand nombre de fois. Notonsknle nombre de FACE obtenus en lan¸cantn fois la pi`ece. Alors

P(FACE) = limn→+∞k

n n - Opinion : Quelle est la probabilit´epour que les´etudiants votent au second tour des pr´esidentielles? Quelle est la probabilit´e pour que l"´equipe de Montceau gagne la coupe? pour que l"OL soit championne de France? 12 D´efinition 23Soit une exp´erience al´eatoire etΩl"espace des possibles associ´e. Une probabilit´esurΩest une appli- cation, d´efinie sur l"ensemble des´ev´enements, qui v´erifie : - axiome 2 : pour toute suite d"´ev´enements(Ai)i?N, deux `adeux incompatibles,quotesdbs_dbs28.pdfusesText_34