[PDF] [PDF] RDM – Ossatures Manuel dexercices - IUT Le Mans

S13 : Contrainte normale dans une poutre `a section droite variable Avec le module RDM – Éléments finis (hypoth`ese contraintes planes, 600 triangles `a 6  



Previous PDF Next PDF





[PDF] Travaux dirigés de résistance des matériaux - Technologue pro

Corrigé TD 2 40 Corrigé TD 3 EXERCICE 3 Un arbre de Déterminer la section S2 qui permet de garder la poutre AB en position horizontale P = 3000 N



[PDF] RDM 1ère année ENTPE Résistance des matériaux – partie 1 - CSB

Corrections des exercices Corrigés RDM ENTPE partie 1 Ainsi, bien que la poutre soit ronde, le poids de la neige reste équivalent au poids de la neige



[PDF] RDM-II - Cours, examens et exercices gratuits et corrigés

Exercices 19 Chapitre 2 Dimensionnement des Poutres Droites Isostatiques Sollicitées en Flexion Simple 2 1 Système isostatique, système hyperstatique, 



[PDF] Cours et Exercices de Résistance des Matériaux Kamel MEHDI

La résistance des matériaux (RdM) étudie le comportement du solide déformable Elle s'intéresse Nous appelons poutre un solide dont une des dimensions est grande vis-à-vis de deux autres et qui est Exercice corrigé On se propose 



[PDF] RDM – Ossatures Manuel dexercices - IUT Le Mans

S13 : Contrainte normale dans une poutre `a section droite variable Avec le module RDM – Éléments finis (hypoth`ese contraintes planes, 600 triangles `a 6  



[PDF] CORRIGE

1 - But de la R D M exercice : Déterminer l'allongement ∆L d'un entrait d'une charpente sachant que σt = 12 MPa et que sa longueur L = 15 m : La flêche devient plus importante - la poutre cesse d'être stable Il ne faut jamais atteindre N 



[PDF] Résistance des matériaux Cours et exercices corrigés

Cours et exercices corrigés La Résistance des matériaux RDM est une partie de la mécanique des solides Elle s'intéresse à l'étude, Notion de poutre



[PDF] RESISTANCE DES MATERIAUX - USTO

La résistance des matériaux, désignée souvent par RDM, est la science du Exercice 1: Trouver les efforts normaux en A et en B dans la poutre ci-dessous

[PDF] exercice recherche internet

[PDF] exercice recherche internet debutant

[PDF] exercice réciproque de pythagore

[PDF] exercice réciproque de thalès brevet

[PDF] exercice rédaction courrier professionnel

[PDF] exercice redressement commandé corrigé

[PDF] exercice rééducation écriture adulte

[PDF] exercice reflexion refraction bac pro

[PDF] exercice régime transitoire 1er ordre

[PDF] exercice régime transitoire corrigé

[PDF] exercice relativité restreinte bac

[PDF] exercice rémunération du personnel

[PDF] exercice reproduction humaine 4ème

[PDF] exercice reproduction terminale s

[PDF] exercice ressources humaines gratuit

RDM { Ossatures

Manuel d'exercices

Yves Debard

Institut Universitaire de Technologie du Mans

26 juin 2006 { 29 mars 2011

Table des matiµeres

1 Exemples

1

Exemple 1 : Portique plan

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Exemple 3 : Anneau plan

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Exemple 4 : Plancher

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Exemple 5 : Ossature spatiale

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Exemple 6 : Modes propres d'un anneau plan

. . . . . . . . . . . . . . . . . . . . . . . . . . 12

Exemple 7 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Analyse statique

16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

E2 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

E3 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

E4 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

E5 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E6 : Poutre droite

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

E7 : Poutre courbe

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

E8 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 E9 : Poutre µa section droite variable soumise µa son poids propre . . . . . . . . . . . . . . . . 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 . . . . . . . . . . . . . 29 . . . . . . . . . . . . . . 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 32
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

S2 : Torsion d'une poutre rectangulaire

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 . . . . . . . . . . . . . . . 45 S11 : Contraintes dans une section droite : °exion-torsion . . . . . . . . . . . . . . . . . . . 46

S12 : Cisaillement du µa l'e®ort tranchant

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 S13 : Contrainte normale dans une poutre µa section droite variable . . . . . . . . . . . . . . 49 . . . . . . . . . . . . . . . 50

S15 : Section droite µa parois minces

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 S16 : Contraintes tangentielles dans un caisson multicellulaire . . . . . . . . . . . . . . . . . 53 3 . . . . . . . . . . . . 55

S18 : Flexion - torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 S19 : Contraintes normales dans une poutre µa section droite variable . . . . . . . . . . . . . 59 60

F1 : Ossature plane

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

F2 : Poutre droite

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

F3 : Poutre droite µa section variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

F4 : Poutre console { °exion-torsion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 F7 : Flambement d'un m^at vertical sous son poids propre . . . . . . . . . . . . . . . . . . . 71

F8 : Flambement d'une poutre droite

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

F9 : Flambement d'un cadre

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Modes propres

75
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

D2 : Poutre droite µa section variable

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 . . . . . . . . . . . . . . . . . 77

D4 : Portique plan

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D5 : Ossature spatiale

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

D6 : Ossature plancher

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 D7 : Vibrations transversales d'une poutre droite libre . . . . . . . . . . . . . . . . . . . . . 81 D8 : Premier mode propre d'une poutre console avec masses . . . . . . . . . . . . . . . . . . 82 83

Chapitre 1

Exemples

Exemple 1 : Portique plan

SoientAl'aire des sections droites etIZleur moment quadratique par rapport µa l'axeZ. L'ossature Le n¾ud 2 porte une force de composantes(P;0;0).

On donne :

L= 2m

A= 16cm2,IZ= 135cm4

E= 200000MPa

P= 10000N

2RDM { Ossatures

Fichier

Ossature plane

Poutres

Sections droites

Section droite quelconque

A= 16cm2,IZ= 135cm4

Liaisons

Cas de charges

Le n¾ud 2 porte une charge de composantes (10000, 0, 0) N.

Module de Young = 200000 MPa

Calculer

Paramµetres

Modµele de Bernoulli

Calculer

Analyse statique

u

2= 2:2144mm; v2=¡0:0017mm; µ2z=¡0:0388º

u

3= 0:0245mm; v3=¡0:0033mm; µ3z= 0:1510º

4z=¡0:0754º

Actions de liaison:

R

1x=¡6077:4N; R1y= 533:4N; M1z= 3221:6N.m

R

4x=¡3922:6N; R4y=¡533:4N

Manuel d'exercices3

Problµeme:

Les poutres1¡2et1¡4sont en acier :

module de Young = 200000 MPa coe±cient de dilatation = 11 10

¡6K¡1

La poutre1¡3est en laiton :

module de Young = 100000 MPa coe±cient de dilatation = 18 10

¡6K¡1

Le n¾ud 1 porte une charge

~Pde composantes(0;¡10000;0)N.

4RDM { Ossatures

Poutres

Relaxations

Sections droites

Modi¯er la couleur courante

module de Young = 100000 MPa , coe±cient de dilatation = 18E¡6K¡1 module de Young = 200000 MPa , coe±cient de dilatation = 11E¡6K¡1

Liaisons

Cas de charges

Le n¾ud 1 porte une force de composantes(0;¡10000;0)N

Calculer

Analyse statique

u

1= 0; v1=¡0:96mm

Allongement des poutres:

1¡2= ¢1¡4= 0:768mm;¢1¡3= 0:960mm

E®orts normaux:

N

1¡2=N1¡4= 4370N; N1¡3= 3008N

Manuel d'exercices5

Exemple 3 : Anneau plan

On donne :

E= 200000MPa ,º= 0:3

c= 10mm ,L=R= 50mm p=¡10N/mm quart de l'anneau.

Fichier

Bibliothµeque

Ossature plane

6RDM { Ossatures

E= 200000MPa ,º= 0:3

Sections droites

Cas de charges

Calculer

Paramµetres

Modµele de Timoshenko

Calculer

Analyse statique

v

1=(6¼2+ 17¼¡6)pR4

24(2 +¼)EIz+¼ pR2

4EA+(2 +¼)pR2

4GAky =¡0:324026¡0:000982¡0:005013 =¡0:330021mm u

3=(¼¡14)pR4

6(2 +¼)EIz+pR2

2EA¡pR2

2GAky = 0:131992¡0:000625 + 0:001950 = 0:133317mm

Actions de liaisons:

F

1x= 0; M1z=(14 + 3¼)pR2

6(2 +¼)=¡18983N.mm

F

3y=¡pR= 500N; M3z=(2 + 3¼)pR2

3(2 +¼)=¡18567N.mm

Mf z2=¡4pR2

3(2 +¼)= 6483N.mm

Contraintes normales:

a b¾ =¨(14 + 3¼)pR2 (2 +¼)c3=§113:90MPa c d¾ =pR c

2¨2(2 + 3¼)pR2

(2 +¼)c3=½106:10

¡116:10MPa

Manuel d'exercices7

v

1=¡0:329765mm; u3= 0:133290mm

Actions de liaison:

F

1x= 0N; M1z=¡18977N.mm; F3y= 500N; M3z=¡18523N.mm

Contraintes normales:

a= 113:86MPa; ¾b=¡113:86MPa; ¾c= 106:14MPa; ¾d=¡116:14MPa

Remarque:

Avec le module RDM {

obtient : v

1=¡0:328065mmu3= 0:133370mm

a= 113:96MPa; ¾b=¡113:96MPa; ¾c= 99:66MPa; ¾d=¡124:20MPa 3 ] donne : c= 99:10MPa; ¾d=¡124:00MPa

8RDM { Ossatures

Exemple 4 : Plancher

1990, pages 342-345.

Problµeme:

Le n¾ud 2 porte une force de composantes(0;0;50)kN et un couple de comosantes(0;100;0)kN.m. La poutre1¡2porte en son milieu une force ponctuelle de composantes(0;0;¡150)kN. (0;0;¡75)kN/m.

On donne :

L= 2m module de Young = 200000 MPa , coe±cient de Poisson = 0.25 aire = 10

2cm2, constante de torsion de Saint VenantJ= 2105cm4,IZ= 105cm4

P= 5000daN

Manuel d'exercices9

Poutres

Sections droites

Section quelconque

Aire = 100 cm

2

Constante de torsion de Saint Venant :J= 2E5 cm4

Moment quadratique :IZ= 1E5 cm4

Liaisons

Cas de charges

Le n¾ud 2 porte une forceFz= 50kN

Le n¾ud 2 porte un coupleMy= 100kN.m

Module de Young = 200000 MPa , coe±cient de Poisson = 0.25

Calculer

Analyse statique

w

2=¡1:2182mm; µ2x=¡0:35599 10¡3rad; µ2y=¡0:14976 10¡3rad

w

4=¡2:0993mm; µ4x= 0:28856 10¡3rad; µ4y= 0:18376 10¡3rad

Actions de liaison:

F

1z= 93:528kN; M1x= 9:493kN.m; M1y=¡163:092kN.m

F

3z= 34:452kN; M3x= 14:240kN.m; M3y= 76:393kN.m

F

5z= 214:940kN; M5x=¡11:543kN.m; M5y=¡239:068kN.m

F

6z= 57:080kN; M6x=¡128:588kN.m; M6y=¡7:351kN.m

10RDM { Ossatures

Exemple 5 : Ossature spatiale

Problµeme:

des rectangles pleins. n¾ud x(m) y(m) z(m) 1 0 0 0 2 0 0 4 3 0 8 4 4 0 11 4 5 3 8 4 6 3 8 0

Le n¾ud 4 porte une force

~Fde composantes(0;0;¡1000)daN .

Manuel d'exercices11

Poutres

Module de Young = 100000 MPa , coe±cient de Poisson = 0.2987

Sections droites

Changer les poutres3¡5et5¡6de groupe

Rectangle plein :600£300mm

Rectangle plein :500£300mm

Rectangle plein :800£300mm

Repµere local

Modi¯er le repµere local de la poutre1¡2(angle = 90º)

Liaisons

Cas de charges

Le n¾ud 4 porte une charge de composantes(0;0;¡1000)daN

Calculer

Paramµetres du calcul

Modµele de Timoshenko

Calculer

Analyse statique

M to Mf Y o Mf Zo M te Mf Y e Mf Ze

1¡2

-6 271.2
-389.6 -6 322
-104.7

RDM { Ossatures

-5.6 271.5
-389.7 -5.64 322.8
-101.2

2¡3

322.2
-6 -104.7 -322.2 96.6
-2513

RDM { Ossatures

-322.8 -5.6 -101.2 -323.1 97.04
-2511

3¡4

0 0 -3000 0 0 0

RDM { Ossatures

0 0 -3000 0 0 0

3¡5

487.2
322.2
-96.6 487.2
-3581 117.1

RDM { Ossatures

488.6
322.8
-97.04 488.6
-3581 119.4

5¡6

117.1
-3581 -487.2 117.1
-3632 -202

RDM { Ossatures

119.4
-3581 -488.6 119.5
-3632 -200.1

12RDM { Ossatures

Exemple 6 : Modes propres d'un anneau plan

Problµeme:

L'anneau et la patte ont des sections droites rectangulaires pleines. On recherche lessix premiers modes propresde cet anneau.

On donne :

R= 0:1m ,L= 0:0275m

E= 72000MPa ,½= 2700kg/m3

Section droite de l'anneau :Ha= 5mm ,Ba= 10mm

Section droite de la patte :Hp= 3mm ,Bp= 10mm

Manuel d'exercices13

Ajouter une poutre verticale

Origine : n¾ud 1 , longueur = 0.0275 m

Module de Young = 72000 MPa

Masse volumique = 2700 kg/m

3

Sections droites

Changer la patte de groupe de section

Rectangle plein : 5 x 10 mm

Rectangle plein : 3 x 10 mm

Liaisons

Poutres

Calculer

Modes propres

6 premiers modes propres

Mode

RDM { Ossatures

1 28.8
28.81
2 189.3

189.30

3 268.8

268.60

4 641.0

640.52

5 682.0

681.65

6

1063.0

1062.70

quotesdbs_dbs7.pdfusesText_13