[PDF] [PDF] Exercices dÉlectrocinétique Régime transitoire et régime forcé continu

Ex-E4 3 Circuit d'ordre 1 (2) Dans le circuit représenté ci-contre on ferme l' interrup- teur K `a la date t = 0, le condensateur étant initialement déchargé 1) Établir 



Previous PDF Next PDF





[PDF] Série dexercices Bobine et dipôle RL

c) Représenter l'allure de la tension UL(t) au cours de l'établissement du courant dans la bobine Exercice 2 : Un circuit électrique comporte en série : Figure 2 



[PDF] BAC LE DIPÔLE RL - TuniSchool

Exercices corrigés : Le dipôle RL Page 1 sur 4 En déduire la valeur de l' inductance L de la bobine Corrigé : 1- D'après la loi des mailles Exercice 1 0 1 2



[PDF] Exercice : CIRCUITS RL ET RLC - Moutamadrisma

Exercice : CIRCUITS RL ET RLC L'objectif de cette étude est de retrouver expérimentalement la capacité d'un condensateur et l'inductance d'une bobine pour 



[PDF] Régimes transitoires du premier ordre Régimes - Étienne Thibierge

12 nov 2017 · Remarque : le corrigé est très guidé, exercice à travailler seul pour s'entraîner Exercice 4 : Circuit RL à deux mailles [♢♢0] E R1 u1 R2 L



[PDF] RÉGIMES TRANSITOIRES - CIRCUITS RL ET RC - corrigé des

RÉGIMES TRANSITOIRES - CIRCUITS RL ET RC - corrigé des exercices A EXERCICES DE BASE I Établissement et rupture d'un courant 1 • Lorsquʼon 



[PDF] Corrigé des exercices sur le dipôle (R,L) - Eklablog

pour uL 2 – Constante de temps d'un circuit RL 2 1 La loi d'additivité des tensions donne: E = uL + u



[PDF] Exercices sur les régimes transitoires du 1 ordre - IUTenligne

Un corrigé avec barème de correction est remis aux étudiants en sortie du devoir (C'est 5 Dipôle R-L soumis à un échelon négatif/positif retardé (1,5pts)



[PDF] Circuits RL et RC

Figure 5 1 – Photo d'inductances On utilise le symbole L pour représenter une inductance Son unité est le Henry [H] 1 Page 2 CHAPITRE 5 CIRCUITS RL 



[PDF] dipôle RL Classe - DevoirTN

Série d'exercices : dipôle RL Exercice 1 : f- Montrer que la constante de temps τ= L/R du dipôle RL est égale à la date pour laquelle la tangente à la courbe 



[PDF] Exercices dÉlectrocinétique Régime transitoire et régime forcé continu

Ex-E4 3 Circuit d'ordre 1 (2) Dans le circuit représenté ci-contre on ferme l' interrup- teur K `a la date t = 0, le condensateur étant initialement déchargé 1) Établir 

[PDF] exercice rmn licence

[PDF] exercice ru 486

[PDF] exercice salaire brut

[PDF] exercice satellite terminale s

[PDF] exercice saut en hauteur

[PDF] exercice saut en longueur college

[PDF] exercice savate boxe francaise

[PDF] exercice schéma narratif 6ème francais facile

[PDF] exercice section de cube terminale s

[PDF] exercice sécurité informatique

[PDF] exercice simplexe minimisation

[PDF] exercice simplification d'équation logique

[PDF] exercice site donneur et accepteur d'électrons

[PDF] exercice solution espace vectoriel

[PDF] exercice son g et j ce1

2008-2009Exercices d"´Electrocin´etique

?R´egime transitoire et r´egime forc´e continuE4? ???Ex-E4.1Circuit d"ordre 1 (1)

ExprimeriR(t) etiL(t), puis tracer les

courbes repr´esentatives.

On poseraτ=L

R. t R L0I i K iLRII 0 I 0

R´ep :iL(t) =I?

1-exp?

-tτ?? etiR(t) =Iexp? -tτ? ???Ex-E4.2CircuitRLCparall`ele

1)D´eterminer l"´equation diff´erentielle v´erifi´ee parien fonction de :

0=1 ⎷LCetQ0=RCω0.

2)On poseλ=1

2Q0. D´etermineri(t) sachant quei(t= 0) =i0?= 0

etu(t= 0) = 0. On distinguera trois cas :a)λ= 1,b)λ >1 etc)λ <1. R´ep : 1)d2idt2+ω0Qdidt+ω20i= 0 avecω0=1⎷LCetQ=RCω0=RLω0;

2.a)λ >1 :i(t) =i0

2.b)λ= 0 :i(t) =i0(1 +λω0t)e-λω0t;

2.c)λ <1 :i(t) =i0(cosωt+sinωt

τω)exp?

-tτ? ???Ex-E4.3Circuit d"ordre 1 (2) Dans le circuit repr´esent´e ci-contre on ferme l"interrup- teurK`a la datet= 0, le condensateur ´etant initialement d´echarg´e.

1)´Etablir l"expression deq(t) o`uqest la charge du

condensateur, en d´eduirei1,i2etien fonction du temps.

2)Calculer `a la datet1l"´energie stock´ee dans le conden-

sateur. E A B i2 C i1i qr R (I) (II)K

3)´Ecrire sous la forme d"une somme d"int´egrales un bilan d"´energie entre les dates 0 ett1.

R´ep : 1)En posantτ=CRr

R+r:q(t) =ECRR+r?

1-exp?

-tτ?? ;i1(t) =Erexp? -tτ? i

2(t) =E

R+r?

1-exp?

-tτ?? ;i(t) =ER+r?

1 +Rrexp?

-tτ?? ???Ex-E4.4Circuit d"ordre 1 (3) D´eterminer l"intensit´e du couranti(t) dans le condensateur, ainsi que la tensionu(t) `a ses bornes sachant que l"on ferme l"interrupteur `a la datet= 0 et que le condensateur n"est pas charg´e initialement.

Repr´esenter graphiquementi(t) etu(t).

R´ep :i(t) =10E

4R+rexp?

-tτ? avecτ=C? R+r4? u(t) =5E 2?

1-exp?

-tτ?? .RK rE r4E r3E r2E qadripcsi@aol.comhttp ://pcsi-unautreregard.over-blog.com/9

Exercices d"´Electrocin´etique2008-2009

???Ex-E4.5R´egime transitoire ap´eriodique (*) `At= 0-, les condensateurs sont d´echarg´es. On ferme alors l"interrupteurK.

1)´Etablir l"´equation diff´erentielle eni1.

2)D´eterminer les conditions initialesi1(0+) etdi1

dt(0+).

3)Exprimeri1(t).

i1 C E A B i2i R KRC R´ep : 1)i1v´erifie l"´equation canonique d"ordre 2 avecω0=1RCetQ=13;2)i1(0+) =ERet di1 dt(0+) =-2ECR2;3)i1(t) =ER? ch? 5 2RCt?

1⎷5.sh?

5

2RCt??

exp? -3t2RC? ???Ex-E4.6Bobine et condensateur r´eels en s´erie (1)

1)D´eterminer l"´equation diff´erentielle v´erifi´ee pari.

2)`A quelles conditions le r´egime transitoire est-il :

a) critique; b) ap´eriodique; c) pseudo-p´eriodique?LR RC e K1 2

R´ep : 1)d2id+2ω

R

2C+LR1?

0.

2)ÜCf CoursE4:regarder le signe de Δ, discriminant de l"´equation caract´eritique, et donc la

valeur deQ(Q <1

2,Q=12,Q <12).

???Ex-E4.7Bobine et condensateur r´eels en s´erie (2) : r´egime transitoire pseudo-p´eriodique (*) Le montage ci-contre mod´elise une bobine r´eelle (L, R) en s´erie avec un condensateur r´eel (C, R) initialement d´echarg´e. On ferme l"interrupteurK`a la datet= 0

On impose la relation suivante :τ=L

R=RC.

Initialement :i(0-) = 0 etu(0-) = 0.

C R LR ui EK

1)´Etablir l"´equation diff´erentielle r´egissantu(t), tension aux bornes du condensateur lorsque le

circuit est branch´e, `at= 0, sur un g´en´erateur de tensionE.

2)D´etermineru(t) pourt≥0.

3)D´etermineri(t), intensit´e circulant dans la bobine.

4)Peut-on pr´evoir le r´egime permanent sans calcul? Si oui, d´eterminerU, tension aux bornes

du condensateur, etI, courant dans la bobine, en r´egime permanent.

R´ep : 3)i(t) =E

2R? 1 +? -costτ+ sintτ? exp? -tτ?? ;4)Faire un sch´ema ´equivalent du montage lorsque le r´egime permanent continu est atteint :I=E

2RetU=E2.

???Ex-E4.8Trois r´esistances et une bobine Le circuit ´etudi´e comporte trois r´esistancesR1,R2etR3, une bobine parfaite d"inductanceL, un g´en´erateur def.´e.m.

Eet un interrupteurK.

1)Initialement, la bobine n"est parcourue par aucun cou-

rant.`A l"instantt= 0, on ferme l"interupteurK. L iE K

R3R2R1

→´Etablir la loi d"´evolution dei(t) et d´eterminer le courantIen r´egime permanent dans la

bobine. On poseraτ=L(R2+R3)

R1R2+R2R3+R3R1.

2)Le courant d"intensit´eIest ´etabli, on ouvre `at= 0 (r´einitialisation du temps!).

10http ://pcsi-unautreregard.over-blog.com/qadripcsi@aol.com

2008-2009Exercices d"´Electrocin´etique

→D´eterminer la nouvelle loi donnanti(t) et l"´energie dissip´ee par effetJouledans les r´esistances.

On poseraτ?=L

R1+R2.

R´ep : 1)i(t) =I0?

1-exp?

-t avecI0=ER2R1R2+R2R3+R3R1;

2)i(t) =Iexp?

-t etEJ=12LI2. ???Ex-E4.9Transfert de charge entre deux condensateurs :

Un condensateur de capacit´eCest charg´e sous uneddpE, puis, `at= 0, est reli´e, par fermeture

de l"interrupteurK, `a un circuit (R,C?) s´erie ( le condensateur de capacit´eC?est initialement

non charg´e).

1)D´eterminer les variations du couranti(t) de d´echarge du condensateurC.

2)Calculer la variation d"´energie ΔEdu syst`eme constitu´e

par la r´esistanceRet les deux condensateursCetC?.

3)D´emontrer que|ΔE|est aussi l"´energie dissip´ee par effet

JouleEJdans la r´esistanceR.

4)L"expression de|ΔE|´etant ind´ependante deR, que se

passe-t-il lorsqueRtend vers 0? Ci(t) u'(t) u(t)K RC'

R´ep : 1)i(t) =ERexp?

-tτ? avec1τ=1R?

1C+1C??

;2)ΔE=-12CC ?C+C?E2. ?R´egime sinuso¨ıdal E5? ???Ex-E4/5.1Circuit RLC S´erie

1)Consid´erons le circuit dipolaire RLC s´erie du cours aliment´e par une tension sinuso¨ıdale

(e(t) =E0cos(ωt)).→´Etablir que l"´equation diff´erentielle qui r´egit la tension aux bornes de la

capacit´eCest : LC d2uC dt2+RCduCdt+uC=E0cos(ωt)

→Donner l"expression intrins`eque de cette ´equation diff´erentielle en fonction deQ, facteur de

qualit´e et de la pulsation propreω0.

→Donner l"expression intrins`eque de cette ´equation diff´erentielle en fonction deα, coefficient

d"amortissement et de la pulsation propreω0. 2)

´Etablir queuC(t) =E0?

sin(ω0t)-2⎷ 3 3exp? -12ω0t? sin? 3

2ω0t??

lorsque le circuit v´erifie les quatre conditions suivantes :

(1)le condensateur est initialement d´echarg´e;(2)l"intensit´e est nulle avant la fermeture de

l"interrupteur;(3)la pulsation du g´en´erateur estω=ω0et(4)le coefficient d"amortissement

vautα=1 2. ???Ex-E5.2Addition de deux signaux de mˆeme fr´equence Supposons deux signaux sinuso¨ıdauxS1(t) =S0cos(ωt) etS2(t) =S0sin(ωt). →En utilisant les repr´esentations complexes, calculer la sommeS(t) =S1(t) +S2(t). →Pr´eciser l"amplitude et la phase `a l"origine de ce signal. →Tracer les fonctionsS1(t),S2(t) etS(t); v´erifier le r´esultat pr´ec´edent. →Si ces deux signaux sont deux tensions telles queS1(t) soit la tension aux bornes d"une

r´esistanceRetS2(t) la tension aux bornes d"un second dipˆole, en d´eduire la nature de ce second

dipˆole. qadripcsi@aol.comhttp ://pcsi-unautreregard.over-blog.com/11

Exercices d"´Electrocin´etique2008-2009

???Ex-E5.3R´eseau `a trois mailles On consid`ere le r´eseau `a trois mailles ind´ependantes, repr´esent´e ci-contre, aliment´e par la source de tension al- ternative def.´e.m.:e(t) =E⎷

2cosωt.

La fr´equence du g´en´erateur est r´egl´ee de mani`ere `a avoir :

Lω=1

Cω=R.

C 2R e LR2LM N D´eterminer toutes les caract´eristiques de l"intensit´edu courant dans la r´esistanceR.

A. N. :E= 20V;R= 10 Ω.

R´ep :i(t) = 0,686cos(ωt-1,82)A, o`u 1,82rad= 104◦. ???Ex-E5.4Mod´elisation de Th´evenin On consid`ere le circuit suivant aliment´e entreAetBpar une source de tension alternative sinuso¨ıdale def.´e.m.: e(t) =E⎷

2cosωt.

D´eterminer les caract´eristiques du g´en´erateur de tension (mod`ele deTh´evenin) ´equivalent entreFetDsachant queωest telle que :LCω2= 1 etRCω= 1C R e LF DRA B

R´ep :

E

Th=2-j5E?eTh(t) =E?2

5cos(ωt-0,464)A, o`u-0,464rad= arctan?

-12? =arg(2-j).

Cettef.´e.m.est en s´erie avecZ

´eq=R´eq+1jC´eqω?soit une r´esistanceR´eq=3R5en s´erie avec une capacit´eC´eq=5C 4. ???Ex-E5.5Calculs d"imp´edances

D´eterminer

l"imp´edance complexe Z du r´eseau dipolaire entre les bornesAet

Bdans les quatre cas

suivants.

En d´eduire `a chaque

fois l"imp´edance r´eelleZainsi que le d´ephasage de la tensionupar rapport au couranti. L i CR A B uLiC A B u L i CR A B u i C A B u Raquotesdbs_dbs1.pdfusesText_1