[PDF] [PDF] EXERCICES dANALYSE MATHEMATIQUE - Unité AFO

EXERCICES d'ANALYSE MATHEMATIQUE Notes du cours de la seconde candidature en sciences mathématiques et en sciences physiques F BASTIN – J -P



Previous PDF Next PDF





[PDF] EXERCICES dANALYSE MATHEMATIQUE - Unité AFO

EXERCICES d'ANALYSE MATHEMATIQUE Notes du cours de la seconde candidature en sciences mathématiques et en sciences physiques F BASTIN – J -P



[PDF] Cours danalyse 1 Licence 1er semestre

7 Corrigé des exercices 69 soit, n'est pas une définition au sens mathématique Il faut savoir qu'en mathématiques il y a beaucoup d'abus de langage



[PDF] Analyse Mathématique I - Département de Mathématique

sur d'autres limites, soit on cherche à majorer xn −a où a est la limite en Analyse (Ce peut être néanmoins un bon exercice que d'adapter les preuves 



[PDF] Analyse - Exo7 - Cours de mathématiques

L'outil central abordé dans ce tome d'analyse, ce sont les fonctions site Exo7 toutes les vidéos correspondant à ce cours, ainsi que des exercices corrigés



[PDF] Analyse 1

Etant donné que le recrutement en première année d'analyse est assez FIGURE 1 1 – Quelques mathématiciens célèbres liés à l'étude des nombres entiers, de façon pratique (ce qui pourra servir pour des exercices) la borne sup et la



[PDF] Cours dAnalyse Semestre 1

Cours d'Analyse (rationnel) autour d'un rationnel q il y a une infinité de rationnels 5 pas des entiers (non démontré ici, exercice pour les plus motivés) différentes, soit en mathématiques, soit dans des mod`eles en physique, en biologie 



[PDF] annales - Institut de Mathématiques de Bordeaux

On trouvera dans ce polycopié les annales du cours d'Analyse 1 (UE M1MI2011) depuis ANNEXE A Annales 2011-2012, texte et corrigé du DS 1, 1h30 Exercice I Soit a un nombre S1 = 1 et majorée par 2 car Sn ≤ 1+(1−1/n)=2− 1/n pour tout n ≥ 2 D'apr`es la http://math u-bordeaux1 fr/∼yger/coursmismi pdf 93 



[PDF] Mathématiques, Semestre S1 - Département de Mathématiques d

Dans ce semestre, les cours de maths s'articulent en deux parties La deuxième partie (“Maths” dans l'emploi du temps) porte sur les bases de l' analyse mathé- Exercice : étude de la dérivabilité en −1 à droite et en 0 de la fonction f(x) =



[PDF] Analyse 1 - MISMI, UE M1MI2011, Annales 2011-2015 Alain Yger

Institut de Mathématiques, Université Bordeaux 1, Talence 33405, France On trouvera dans ce polycopié les annales du cours d'Analyse 1 (UE M1MI2011) ANNEXE A Annales 2011-2012, texte et corrigé du DS 1, 1h30 Exercice I Soit a un S1 = 1 et majorée par 2 car Sn ≤ 1+(1−1/n)=2−1/n pour tout n ≥ 2

[PDF] exercices corrigés d'arithmétique terminale s

[PDF] exercices corrigés d'arithmétique terminale s pdf

[PDF] exercices corrigés d'economie monétaire pdf

[PDF] exercices corrigés d'électricité pdf

[PDF] exercices corrigés d'électrochimie pdf

[PDF] exercices corrigés d'electronique de puissance pdf

[PDF] exercices corrigés d'électrostatique pdf

[PDF] exercices corrigés d'hydrostatique 2éme année

[PDF] exercices corrigés d'immunologie

[PDF] exercices corrigés d'immunologie pdf

[PDF] exercices corrigés d'optimisation pdf

[PDF] exercices corrigés d'optimisation sans contrainte pdf

[PDF] exercices corrigés d'optimisation sous contrainte pdf

[PDF] exercices corrigés de champ electrostatique première s pdf

[PDF] exercices corrigés de chimie analytique pdf

UNIVERSITE DE LIEGE

Faculte des Sciences

EXERCICES

d'ANALYSE

MATHEMATIQUE

Notes du cours de la seconde candidature

en sciences mathematiques et en sciences physiques

F.BASTIN { J.-P. SCHNEIDERS

Septembre 1992

EDITION PROVISOIRE

Introduction

Ce cahier d'exercices est destine aux etudiants de seconde candida- ture en sciences mathematiques et physiques. Il a pour but de completer le cours d'analyse du Professeur J. Schmets et a servir de base aux seances de travaux pratiques. Les exercices sont nombreux et ont un degre de diculte tres vari- able. Certains sont uniquement destines a aider l'etudiant a acquerir les automatismes de base pour la manipulation des dierents concepts introduits dans la partie theorique du cours. D'autres ne sont pas a pro- prement parler des exercices mais plut^ot des applications de la theorie a la resolution de problemes concrets. Leur but est de mettre en evidence comment tirer parti des methodes enseignees dans des situations en re- lation directe avec la pratique. La plupart des exercices sont fournis avec leur solution detaillee, ceci an que l'etudiant qui desire travailler par lui-m^eme puisse contr^oler ses resultats. Il va sans dire que seule la recherche personnelle des solutions peut faire progresser dans la connaissance de la matiere et que ces solutions ne devraient ^etre utilisees que comme contr^ole. L'origine des exercices est tres variee. La plupart proviennent des livres classiques d'analyse cites dans la bibliographie. Dans de nom- breux cas, ils ont ete modies pour s'integrer dans le cadre du cours et parfois leurs solutions ont ete simpliees par des arguments originaux. Nous pensons que le but principal d'un cahier d'exercices est d'aider l'etudiant a ma^triser la matiere du cours. Pour atteindre ce but, la collaboration des etudiants est necessaire. Nous sommes donc ouverts a toute suggestion concernant l'incorporation de nouveaux exercices ou la consideration de nouveaux problemes entrant dans le cadre du cours. i ii Nos plus vifs remerciements vont a M. A. Garcet et Mme J. Lombet pour leur aide lors de la relecture des epreuves. Pour terminer, nous voudrions egalement remercier Mme N. Dumont pour le soin qu'elle a apporte a l'encodage en TEX de notre manuscrit.

Liege, septembre 1990

F. Bastin | J.-P. Schneiders

Chapitre 1

Espaces metriques et normes

Exercice 1.1Par denition, un ensemble est inni s'il est en bijection avec l'une de ses parties propres; un ensemble est ni s'il n'est pas inni. a) SiAest un ensemble ni et non vide, toute injection deAdansA est une bijection. b) SiAest un ensemble qui contient une suite de points deux a deux distincts, alorsAest inni.

Solution:

a) Sif:A!Aest injectif mais non surjectif, alorsf(A) est une partie propre deAetg:A!f(A)a7!f(a) est une bijection. D'ou la conclusion. b) SoitD:=fxm:m2INgune partie deAtelle quexm6=xnsim6=n. Posons B:=Anfx1get denissonsf:A!Bparf(a) =asia2AnDetf(xm) =xm+1 pour toutm2IN. Des lorsAest inni carfest une bijection etBest une partie propre deA.2 Exercice 1.2Donner l'expression d'une bijection entre [0;1[ et ]0;1[.

Solution:L'applicationT: [0;1[!]0;1[ denie par

T(x) =8

:1=2 six= 0

1=(m+ 1) six= 1=m

xsinon est une bijection entre les intervalles [0;1[ et ]0;1[.2 1

2Chapitre 1.

Exercice 1.3Soit (X;d) un espace metrique.

a) Pour toute partieAdeXet tout ouvert on a ( \A)= \A). b) Une partieDdeXest partout dense si et seulement siDrencontre tout ouvert non vide deX. c) SiA;BetAj(j2J) sont des parties deX, on a (A\B)=A\B(A[B)=A[B A [B(A[B)(A\B)A\B (\j2JAj)= (\j2JAj)([j2JAj)= ([j2JAj): d) SiAetBsont des parties deXtelles queA\B=A\B=; alors (A[B)=A[B(A[B)=A[B: e) SiAetBsont des parties deXet siAouBest ouvert alors A \B= (A\B): f) SiAest une partie non vide deX, alors A =fx2X:d(x;A) = 0g: On en deduit que tout ferme (resp. tout ouvert) deXest inter- section (resp. union) denombrable d'ouverts (resp. de fermes).

Solution:a) Bien s^ur, on a (A\

)(A\ ). Soit alorsa2A\ et soit

Vun voisinage dea. Comme

\Vest encore un voisinage dea, et commeaest adherent aA, l'intersectionA\( \V) n'est pas vide. DeA\ (A\ ), on deduit alors la these. b) decoule du fait que tout ouvert est voisinage de chacun de ses points et que tout voisinage dexcontient un ouvert auquelxappartient. c) est direct vu les proprietes de l'interieur et de l'adherence d'une partie deX. d) On a toujoursA[B(A[B)et par consequent aussi (A[B) A [B. Supposons queA\B=A\B=;(?). Soitx2(A[B). Sixappar- tient aA(resp. aB), on deduit de (?) que l'ensembleCB(resp.CA) est un voisinage dex; par consequent (A[B)\CB=A\CB(resp. (A[B)\CA=B\CA) est

Espaces metriques et normes3

aussi un voisinage dex. Des lorsA(resp.B) est voisinage dexetx2A[B.

Comme on aACBCBetBCACA, l'egalite

A [B= (AnA)[(BnB) conduit a A [B(A[B)n(A[B) = (A[B)n(A[B) = (A[B) e) Pour toutes partiesAetBdeX, on aA\BA\B; par consequent (A\B)A\Bdonc (A\B)(A\B)=A\B. Cela etant, sup- posons par exemple queAsoit ouvert et demontrons que l'ouvertA\Best inclus dans (A\B). CommeAest ouvert, on a (A\B)= (A\B). Soit alors un elementxdeA\Bet un voisinageVdex. L'ensembleA\B\V etant encore un voisinage dex, on en deduit queA\B\Vn'est pas vide. D'ou la conclusion. f) L'adherenceAdeAs'ecrit encore A =\m2IN[a2Afx2X:d(x;a)<1m g:

Des lors, par denition de la fonctiond(;A), on a

A =\m2INfx2X:d(x;a)<1m g d'ou A =fx2X:d(x;A) = 0g: 2 Exercice 1.4Soient (X;d) un espace metrique,Bun sous-espace de (X;d) etAune partie deB. Alors a)AB=AX\B;AX=AB\BX;ABAX\B; b) siBest ouvert dans (X;d) alorsAX=ABetAB=AX\B; si

Best ferme alorsAB=AX.

Solution:Il sut d'appliquer les denitions de l'adherence, de l'interieur et de la frontiere d'un ensemble dans un espace metrique.

4Chapitre 1.

Exemples :

(i) DansX= IR : l'ensembleA=]0;1] est ferme dansB=]0;+1[, ouvert dans B=] 1;1]; l'ensembleA=f0gconcide avec sa frontiere dansX= IR alors que sa frontiere dansB=f0g[[1;2] est l'ensemble vide (f0gest voisinage de lui-m^eme dans cet espace). (ii) DansX= IR3: l'ensembleA=f(x;y;0) :x2+y2<1gest ouvert dans

B= IR2et son interieur dans IR3est vide.2

Exercice 1.5Soient

un ouvert non vide de IRnetfune fonction denie sur telle que lim x!x0;x6=x0f(x) = 0 pour toutx02 . Alors l'ensemble des points d'annulation defest partout dense dans

Solution:SoitNl'ensemblefx2

:f(x) = 0get soit!un ouvert non vide de . Si!\N=;alors!=[m2INfx2!:jf(x)j 1m g. Comme!est un ouvert non vide de IR n, il n'est pas denombrable; il s'ensuit qu'il existeM2IN tel que l'ensemblefx2!:jf(x)j 1M gne soit pas denombrable. Cela etant, soitKm (m2IN) une suite croissante de compacts telle que!=[m2INKm. On obtient donc unM02IN tel que l'ensemblefx2KM0:jf(x)j 1M gsoit non denombrable; soitxm(m2IN) une suite d'elements distincts de cet ensemble. CommeKM0est compact, quitte a passer a une sous-suite, on peut supposer que la suitexmconverge versx2KM0et quexm6=xpour toutm2IN. Des lors, vu l'hypothese surf, on a lim m!+1f(xm) = 0, ce qui contreditjf(xm)j 1M pour toutm2IN.2 Exercice 1.6Soit (X;dX) l'espace discret introduit au cours. a) Pour tout espace metrique (Y;dY), toute application f: (X;dX)!(Y;dY) est continue. b) (X;dX) est complet. c) (X;dX) est compact si et seulement siXest ni. d) (X;dX) est separable si et seulement siXest denombrable. e) Les seules parties connexes non vides de (X;dX) sont les singletons. Solution:Il sut de se rappeler que tous les sous-ensembles deXsont des ouverts de (X;dX).2

Espaces metriques et normes5

Exercice 1.7Soit (X;d) un espace metrique et soitAune partie non vide deX. Alors a)Aest borne si et seulement siAest borne; b) siAest borne, alors diamA= diamA; c) siAest precompact, alorsAest borne; d) si (X;d) est complet, siAm(m2IN) est une suite decroissante de parties bornees, fermees et non vides de (X;d) telle que diamAm!0; alors\+1m=1Amest un singleton.

Solution:

a) est immediat car d'une partAAet d'autre part les boulesb(x;r) de (X;d) sont fermees. b) CommeAA, on a bien s^ur diamAdiamA. Reciproquement, soient x;ydeux elements deAet soit >0. Il existea;b2Atels qued(x;a)=2 et d(y;b)=2. Des lors on obtientd(x;y)d(x;a) +d(a;b) +d(y;b)+ diamA.

Finalement, on a diamAdiamA.

c) CommeAest precompact, il existeN2IN etan2X(nN) tels que

AN[n=1b(an;1):

Soitx2X. Alors pour tout elementadeA, on a

d(x;a)d(x;an) +d(an;a)sup(d(x;aj) :jN) + 1quotesdbs_dbs1.pdfusesText_1