[PDF] [PDF] Les puissances à exposants négatifs

Les puissances à exposants négatifs 1 Nous connaissons bien la notation 2n où n est un entier positif : 0 c'est une puissance avec l'exposant négatif –3



Previous PDF Next PDF





[PDF] Les puissances à exposants négatifs

Les puissances à exposants négatifs 1 Nous connaissons bien la notation 2n où n est un entier positif : 0 c'est une puissance avec l'exposant négatif –3



[PDF] Notation Scientifique

Pour les valeurs qui dépassent cette limite la calculatrice utilise la notation Si le nombre ou l'exposant est négatif, utiliser la touche d'opposé (−) et non pas



[PDF] Notation Scientifique

Pour les valeurs qui dépassent cette limite la calculatrice utilise la notation Si le nombre ou l'exposant est négatif, utiliser la touche d'opposé (−) et non



[PDF] LES EXPOSANTS ET LES PARENTHÈSES - Corrigé

dans laquelle a est un nombre entier et n, un nombre entier positif Déterminer le signe de la valeur de la puissance a n , en utilisant la multiplication répétée, si :



[PDF] PUISSANCES Cours 1) Puissance dexposant positif Définition

Règle de calcul : Soient n et p deux entiers supérieurs ou égaux à 1 et a un nombre relatif an × ap = an + p On somme les deux exposants Rq : 83 × 82 × 84 



[PDF] Puissances - Labomath

(comme le calcul ne contenait que des produits on a pu modifier l'ordre des facteurs) définir de proche en proche les puissances de 2 à exposant négatif



[PDF] Puissances

puissances d'exposant positif Utiliser les puissances d'exposant négatif Existe-t-il un moyen d'effectuer ces calculs facilement avec ta calculatrice ? Activité



[PDF] Puissances I Puissances dun nombre relatif 1) Exposant entier

a désigne un nombre relatif et n un entier positif non nul a n Le nombre n s' appelle un exposant Exemple : 3 4 négatif A l'aide de la calculatrice, calculer :



[PDF] Chapitre 5 : « Puissances entières dun nombre »

On compte les facteurs négatifs, s'il y en a un nombre : • pair, le an se dit « a puissance n » ou « a exposant n » × –2 18 (On applique la règle de calcul)



[PDF] Calcul en écriture fractionnaire - puissance

Δ signe de –x ? si x= –5 alors –x=5>0 Le produit de plusieurs facteurs non nuls est : • positif s'il y a un nombre pair de facteurs négatifs • négatif s'il y a un 

[PDF] exposant négatif allo prof

[PDF] exposant fractionnaire négatif

[PDF] 10 exposant négatif

[PDF] exercice fraction irreductible 4eme

[PDF] fractions irréductibles exercices

[PDF] expliquer comment rendre une fraction irréductible

[PDF] calcul fractionnaire multiplication

[PDF] fraction sur ti 82 advanced

[PDF] calcul fractionnaire addition

[PDF] calculs en seconde

[PDF] calcul numerique niveau terminal

[PDF] exercices de calcul seconde

[PDF] exercices calcul numerique

[PDF] fiche calcul numérique seconde

[PDF] exercice fraction 2nd

CHAPITRE 2

Les puissances à exposants négatifs

1. Introduction : les puissances de 2

Nous connaissons bien la notation

2n où n est un entier positif :

0 2 1= 1 2 2= 2

2 2 2 4= × =

32 2 2 2 8= × × =

42 2 2 2 2 16= × × × =

En général :

facteurs

2 2 2 ... 2Nn

nn" Î = × × ×????? Remarquons qu"il y a une relation évidente entre deux puissances successives de 2. Par exemple :

4 32 2 2= × ou encore :

4 3222=

5 42 2 2= × ou encore :

3 2222=

6 52 2 2= × ou encore :

6 5222=
etc.

En général :

()* 12 2 2Nn nn-" Î = ×

Ou encore : 1222

n n-=

Nous allons essayer de donner un sens à

32- : c"est une puissance avec l"exposant négatif -3. Pour

cela, nous faisons l"hypothèse que la formule (4.3) reste valable pour tout entier relatif n. Nous

obtenons de cette façon le tableau suivant : n -3 -2 -1 0 1 2 3 2n 1 8 1 4 1

2 1 2 4 8

:2 :2 :2 :2 :2 :2

Il est donc naturel de poser :

3

31 128 2

En d"autres termes :

32- est l"inverse de 32.

2Et en général :

( )122Nnnn-" Î = est l"inverse de 2n

2. Définition et exemples

Définition. Soit

*RaÎ et NnÎ. na- est l"inverse de na. Donc : 1n naa Remarque. Dans la définition on doit choisir 0a¹ puisqu"en général 1 1

0 0n= n"existe pas !

Corollaire de la définition. Comme

na- est l"inverse de na, on peut dire également que na est l"inverse de na-. En d"autres termes : 1n naa-=

Démonstration. 1 11n n n n

nna a a aa a

Exemples.

▪ Puissances de 3 1

11 133 3

2

21 133 9

3

31 133 27

▪ Puissances de -3 1

11 1 133 33-- = = = ---

2

21 1393

3

31 13273-- = = --

Remarquons que les puissances paires de -3 sont positives tandis que les puissances impaires de -3 sont négatives. Ceci est général :

Signe d"une puissance. Soit

*RaÎ et ZnÎ. a) Si 0a> alors 0na>. b) (i) Si 0a< et n est pair alors 0na>. (ii) Si 0a< et n est impair alors 0na<. n -4 -3 -2 -1 0 1 2 3 4 3n 1 81 1
27 1
9 1

3 1 3 9 27 81

n -4 -3 -2 -1 0 1 2 3 4 ( )3 n- 1 81 1
27- 1
9 1

3- 1 -3 9 -27 81

33. Propriétés Pour commencer, rappelons les propriétés des puissances à exposants positifs:

()()*, ,R Na b n m" Î " Î

Puissance d"un produit : ( )

nn nab a b=

Puissance d"un quotient :

nn na a b b Produit de puissances de même base : n m n ma a a+=

Quotient de puissances de même base :

si

1 si n m

n m m na n ma a n ma-

Puissance d"une puissance : ()

mn nma a= Nous allons prouver que ces formules restent valables pour des exposants négatifs.

· Puissance d"un produit

()( ) ( )*,R Z nn na b n ab a b" Î " Î =

Démonstration. La formule est déja valable si NnÎ (voir cours de 6e). Il reste donc à démontrer la

formule si Zn-Î, c.-à-d. si n m= - avec NmÎ. Dans ce cas :

1 par définition

1 formule pour exposants positifs 1 1 produit de deux fractions (voir cha p. 3) par définitionn m m m m m m m m n nab ab ab a b a b a b a b-

Exemple.

33 3 312 2

8a a a

· Puissance d"un quotient

( )( )*,R Zn n na aa b nb b

Démonstration. La formule est déja valable siNnÎ. Il reste donc à démontrer la formule siZn-Î,

c.-à-d. si n m= - avec NmÎ. Dans ce cas : 4 ( ) ( ) ( ) ( )1 1 1 n m m m n m m m m m m n m a a b a aaab b a b b ba b b- avec : ()par définition* = ()** =formule pour exposants positifs ()*** = formule sur les fractions

Exemple.

33 3

3 3 33 27

3 3x xx x

L"exemple suggère d"introduire une autre formule intéressante : ( )( )*,R Z n na ba b nb a

Démonstration.

1 1 1 nnn n n n n n n na a b bbb b a b a a a

Exemple.

4 43 3xx

· Produit de puissances de même base

()()*,R Zn m n ma n m a a a+" Î " Î =

Démonstration. La formule est déja valable si NnÎ et NmÎ. Il reste donc à démontrer la formule

si Zn-Î ou si Zm-Î. Nous allons nous restreindre au cas ou NnÎ et Zm-Î, c.-à-d. "m m= - avec "NmÎ. Alors : ""d"après (4.11) " si "

1 si "

n m n m n n m n m m m nn m n m m na a n maa a a aa a a a n ma- +

Exemple.

( )5 85 8 3

31 12 2 2 22 8

· Quotient de puissances de même base

( )( )*,R Znn m maa n m aa

Démonstration. ( )

par définition d"après (4.16)1 nn n m n m n m m maa a a a aa a

Exemple.

44 54 5

52

2 2 22

5· Puissance d"une puissance

*,R Z mn nma n m a a" Î " Î =

Démonstration. La formule est déja valable si NnÎ et NmÎ. Il reste donc à démontrer la formule

si Zn-Î ou si Zm-Î. Nous allons nous restreindre au cas ou NnÎ et Zm-Î, c.-à-d. "m m= - avec "NmÎ. Alors : "1 1 m mn nnm nm mnmna a a aaa- Le lecteur est invité à démontrer la formule dans les autres cas.

Exemple.

32 6

61 12 22 64

4. Notation scientifique

Dans les sciences, on rencontre souvent de très grands nombres ou encore des nombres très

proches de 0. Par exemple, la masse d"un électron est à peu près égale à m 0,000000000000000 000000000000000911 kge¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢=

Quel travail que d"écrire ce nombre ! De plus, son développement décimal n"est pas très lisible : il

est en effet difficile de compter le nombre de zéros avant de rencontrer le premier chiffre significatif

c.-à-d. 9. Afin de bien comprendre la notation scientifique de ce nombre, nous allons d"abord étudier

les puissances de 10. n 0 1 2 3 4 5 6

10n 1 10 100 1000 10´000 100´000 1´000´000

quotesdbs_dbs4.pdfusesText_7