[PDF] [PDF] Exercices et Contrôles Corrigés de Mécanique Analytique - CERN

de Mécanique Analytique et Vibrations Pr M EL En utilisant les équations de Lagrange, établir l'équation du mouvement 1 2 Corrigés des exercices 11



Previous PDF Next PDF





[PDF] Exercices et Contrôles Corrigés de Mécanique Analytique - CERN

de Mécanique Analytique et Vibrations Pr M EL En utilisant les équations de Lagrange, établir l'équation du mouvement 1 2 Corrigés des exercices 11



[PDF] Problèmes corrigés de mécanique et résumés de cours

Exercices et problèmes corrigés (E Belorizky W Gorecki) - La teur un livre intitulé La mécanique : de la formulation lagrangienne au chaos hamiltonien,



[PDF] Mécanique analytique - Université Laval

25 oct 2019 · MÉCANIQUE LAGRANGIENNE DES MILIEUX CONTINUS 193 7 1 Le passage à la Présentation : Ajout d'exercices en fin de chapitres



[PDF] Mécanique Analytique , examen final - EPFL

On aimerait résoudre cet exercice en utilisant la méthode de Hamilton-Jacobi (a) Poser Mécanique Analytique , Corrigé de l'Examen Epreuve du 24 juin 



[PDF] Mécanique Analytique , Corrigé 4 - EPFL

Mécanique Analytique , Corrigé 4 Exercice 1 : Deux masses et un ressort 1 la position d'équilibre sont petites par rapport à L Le Lagrangien décrivant les 



[PDF] Travaux dirigés de physique quantique PA101 - PC 1 Mécanique

Combien de degrés de liberté poss`ede ce syst`eme? 2 Ecrire son lagrangien 3 Ecrire les équations du mouvement Exercice 3 On consid`ere une particule de 



[PDF] mecanique analytique

Exercice 3 Classification des systèmes mécaniques 99 Exercices 4 Equations de Lagrange (utilisation de l'énergie cinétique) 100 Exercices 5 Equations de 



[PDF] Mécanique du solide et Mécanique analytique - Centre de Physique

2 jan 2012 · Exercice 1 1 5 Trouver l'expression du lagrangien L(θ, ˙ θ) d'un pendule simple de masse m, longueur l dans le champ de pesanteur g = const 



[PDF] Examens Corrigés Mécanique Analytiquepdf - ExoCo-LMD

Quelle est la force de frottement T avec le sol à l'équilibre 2 Calculer la réaction RA Exercice 2 (8pts) Soit le dispositif à double poulies dont les 

[PDF] exercices corrigés mécanique quantique oscillateur harmonique

[PDF] exercices corrigés mesure et intégration pdf

[PDF] exercices corrigés mesures et incertitudes

[PDF] exercices corrigés méthode du gradient conjugué

[PDF] exercices corrigés methodes itératives

[PDF] exercices corrigés microéconomie 1ère année

[PDF] exercices corrigés microéconomie équilibre général

[PDF] exercices corrigés mitose

[PDF] exercices corrigés modes de financement

[PDF] exercices corrigés mouvement des satellites

[PDF] exercices corrigés mouvement seconde

[PDF] exercices corrigés nomenclature chimie organique terminale s

[PDF] exercices corrigés ondes seconde

[PDF] exercices corrigés ondes terminale s

[PDF] exercices corrigés optimisation non linéaire

Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

CHAPITRE1

Formalisme lagrangien

1.1 Exercices

1.1.1

Exercice

1. Rappeler ce qu"est un d´eplacement virtuel et qu"appelle-t-on par le travail virtuel

en g´en´eral? Que devient ce travail si le syst`eme est statique ou se d´eplace avec un mouvement uniforme?

2. Consid´erons une massemplac´ee enAet reli´ee par deux tiges rigides aux points

OetB. Les barres de logueurOA=AB=lsont articul´ees enA. Le support de l"articulationOest fixe et le patin articul´e enBpeut glisser sans frottement le long de l"axe horizontal, figure 1.4. Les articulations sontsuppos´ees parfaites et les masses des tiges et du patin sont negligeables. (a) Quel est le nombre de degr´es de li- bert´e de ce syst`eme? (b) En appliquant le principe de d"Alembert, quelle force?Ffaut-il appliquer au patin pour que le sys- t`eme reste en ´equilibre? (c) D´eterminer la valeur de la r´eaction enB. Oy x A B

ORl lgmBR

F

Figure1.1 - Syst`eme de treillis.

1.1.2Exercice

3

Formalisme lagrangien

On consid`ere une sph`ere creuse (S) de

rayonadans un rep`ere galil´eenR(O,xyz).

Une bille suppos´ee ponctuelle de massem

est astreinte `a se d´eplacer sans frottement `a l"int´erieur de la sph`ere, figure 1.5

1. Quelles sont les contraintes sur le

mouvement dem? En d´eduire le nombre de degr´e de libert´e de la bille.

2. Calculer les composantes des forces

g´en´eralis´ees.

3. En d´eduire les ´equations du mouve-

ment.

4. Calculer l"´energie cin´etique de la

bille, en d´eduire les ´equations de La- grange et ensuite les ´equations du mouvement.

5. Etudier le cas o`uθetφsontconstants.

Y Z X ?ρr θM ru θu ?u O

Figure1.2 - Mouvent d"une bille `a l"int´e-

rieur d"une sph`ere.

1.1.3Exercice

On consid`ere une perle de massemqui peut coulisser parfaitement sur un cerceau de rayonR. Le cerceau est vertical et tourne autour de l"axe vertical avec la fr´equence angulaire Ω =φfixe, figure 1.3.

1. Relever les contraines sur le mou-

vement de la perle et montrer que la position de la perle est compl`ete- ment d´ecrite par la variableθ.

2. Calculer l"´energie cin´etque et l"´ener-

gie potentielle. En d´eduire le lagran- gien de la perle.

3. Calculer le moment conjugu´epde

θ. En d´eduire que l"expression du

hamiltonien peut se mettre sous la forme

H(θ,p) =P2

2mR2+˜U(θ).

Interpr´eter les diff´erents termes de

H(θ,p).

4. D´eterminer les extremums de

˜U(θ).

En d´eduire les positions d"´equilibreet discuter les en fonction de Ω.Quelle sera la trajectoire de la perlesi les conditions initiales sontθ= 0

etθ= 0. Oz y x M R

Figure1.3 - Mouvent d"une perle sur un

cerceau. Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

1.1 Exercices5

1.1.4Exercice

Dans un espace `a deux dimensions (x,z), on consid`ere un milieu mat´eriel d"indice de r´efraction n=n(z). La distance parcouruedsest li´ee `a l"indice de r´efraction pards= cdt/n, o`ucest la vitesse de la lumi`ere dans le vide. L"objectif est de chercher le chemin le minimum du chemin optique (Principe de Fermat).

1. Ecrire l"expression du chemin optique comme une int´egrale sur le param`etrez. En

utilisant le principe de moindre action, montrer qu"il existe une int´egrale premi`ere.

En d´eduire les lois de Snell-Descartes.

2. Ecrire le chemin optique comme une int´egrale sur le param`etrex. En utilisant

le principe de moindre action, montrer qu"il existe une int´egrale premi`ere. En d´eduire les lois de Snell-Descartes.

3. Trouver la trajectoire lumineuse pour une variation lin´eaire de l"indice de r´efrac-

tionn(z) =n0+λz, sachant que les conditions initiales sontz(0) = 0 etz?(0) = 0.

1.1.5Exercice

Soit un pendule de longueurlavec une masse plac´ee dans un champs de pesanteurg et astreint `a se d´eplacer dans un plan (x,y) muni de la base mobile (?ur,?uθ). La position du pointMest rep´er´ee par--→OM=l?ur.

1. Calculer le nomde de degr´es de libert´e. En d´eduire que l"on peut d´ecrire le syst`eme

par la coordonn´eeθ.

2. Calculer la vitesse et d´eduire l"expression de l"´energie cin´etique.

3. Calculer le travail effectu´e lors d"un d´eplacement virtuelδ?r=lδθ?uθ. En d´eduire

l"expression de la composante de la force g´en´eralis´ee selonθ.

4. En utilisant la relation entre l"acc´el´eration g´en´eralis´ee et la force g´en´eralis´ee selon

θ, d´eduire l"´equation du mouvement enθ.

5. Calculer l"expression du Lagrangien et d´eduire l"´equation du mouvement en uti-

lisant l"´equation de Lagrange.

1.1.6Exercice

Soit une massemastreinte `a se d´eplacer sur une tige ind´eformable faisant un angle θavec la verticaleOZ, en rotation impos´ee avec un vecteur de rotation?Ω = Ω?uZ. La masse est attach´ee `a un ressort de constante de raideurket de longueur `a videl0et glisse sans frottement. Elle est par ailleurs soumise `a son poids.Ce syst`eme est `a un degr´e de

libert´e, on choisit la distancer=|--→OM. Le r´ef´erentiel choisi est celui du laboratoire. Il

est galil´een.

1. Calculer la vitesse et d´eduire l"´energie cin´etiqueT.

2. Calculer la force g´en´eralis´ee associ´ee `a la coordonn´eer.

3. En utilisant les ´equations de Lagrange, ´etablir l"´equation du mouvement.

Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

Formalisme lagrangien

1.1.7Exercice

On consid`ere deux billes de masses respectivesmetM (m < M), attach´ees entre elles par un fil inextensible de masse n´egligeable passant par un petit trou dans un plan horizontal. La petite bille est anim´ee d"un mouvement de rotation sur le plan horizontal. La grande bille est sus- pendue au fil et chute sous l"effet de son poids. On notel la longueur totale du fil et r la longueur du segment ho- rizontal. On noteθl"angle que fait le segment horizontal avec un direction fixe quelconque du plan.

Plateau

z x y O m θr k i j reθe M

1. Calculer le lagrangienL=T-Vpour les coordonn´ees g´en´eralis´ees (r,θ).

2. D´eterminer la coordonn´ee cyclique et reconnaˆıtre sonmoment conjugu´e. Pourquoi

est-il conserv´e?

3. En d´eduire l"´equation diff´erentielle du mouvement pourr.

4. On s"int´eresse aux premiers instants de la chute. On poser=l(1-?) avec??1.

d´eterminer l"´equation diff´erentielle v´erifi´ee par?. Montrer pour qu"une valeur de

la vitesse angulaire initialeθ0, la chaˆıne ne peut pas tomber. Dans le cas o`u la chaˆıne tombe, que devient la vitesse angulaire initialeθ.

1.1.8Exercice

On utilise le formalisme de Lagrange

pour ´etudier le syst`eme suivant : une masse ponctuellem1est reli´ee par un fil suppos´e sans masse de longueurl1`a un point fixeO.

Une seconde massem2est reli´ee par un fil

sans masse de longueurl2`am1. Les deux masses ne peuvent pas se mouvoir que dans le plan vertical.O m1 m2θ1

θ2l

1 2 l y x

1. D´efinir les liaisons, le nombre de degr´es de libert´e et les coordonn´ees g´en´eralis´ees.

2. Calculer l"´energie cin´etique et l"´energie potentielle. En d´eduire l"expression du

Lagrangien.

3. Trouver les ´equations du mouvement.

Contact: elkacimi@uca.maD´epartement de Physique - FSSM 2015/2016

1.1 Exercices7

1.1.9Exercice : Machine d"Atwood

Le dispositif de la machine d"Atwood est d´ecrit par la figure ci-contre. La massem1est reli´ee `a la poulie 1 de masseMpar l"interm´ediaire d"une cordre inextensible de longueurLet de masse n´egligeable. Quant `a la massem2, elle est reli´ee `a la massem3par le biais d"une corde inexten- sible de longueurLest de masse n´egligeable.

Les poulies 1 et 2 ont des rayons respectifsR1

etR2. La poulie 1 est accroch´ee par un fil inex- tensible de masse n´egligeable et de longueurl0.

Les fils glissent sur les poulies sans frottement

et les moments d"inertie de ces derni`eres sont n´egligeables.

Poulie 1

1m

Poulie 2

2m 3m

1. D´enombrer les forces appliqu´ees au syst`eme des massesmi,i= 1,2,3 etMet

relever les forces de liaison.

2. Etablir les expressions des contraintes et dire de quellenature sont-elles. Justifier

les r´eponses.

3. En d´eduire le nombre de degr´es de libert´e et pr´eciser les coordonn´ees g´en´eralis´ees

`a utiliser.

4. En utilisant le formalisme de Newton, retouver les ´equations du mouvement et

d´eduire les expressions des acc´el´erations de chacune des masses, d"une part, et des forces de liaison, d"autre part.

1.1.10Exercice

Un artisan utilise une ´echelle de hauteur

?--→AB?=Let de masseMpour peindre un mur. Les extr´emit´es de l"´echelle s"appuient sur le mur et le sol, voir figure ci-contre. Le pied de l"´echelle est attach´e au pointOdu mur par l"interm´e- diaire d"une corde inextensible de longueurlet de masse n´egligeable de fa¸con que l"´echelle fasse un angleθet assure sa stabilit´e. SoitGle centre de gravit´e de l"´echelle. Les frottements enAet enBsont nuls. gMyquotesdbs_dbs1.pdfusesText_1