[PDF] [PDF] Corrigé (des exercices 1-8) du TD no 9 — Formules de Taylor

3 Un développement limité de f en x0 à l'ordre n est la donnée d'un polynôme P de degré n tel que l'on 



Previous PDF Next PDF





[PDF] Feuille dexercices 10 Développements limités-Calculs de limites

Fondamentaux des mathématiques 2 Correction exercice 1 à l'ordre 5 donne le polynôme de Taylor du développement limité de tan( ) à l'ordre 5 en 0



[PDF] Corrigé (des exercices 1-8) du TD no 9 — Formules de Taylor

3 Un développement limité de f en x0 à l'ordre n est la donnée d'un polynôme P de degré n tel que l'on 



[PDF] Développements limités

Maths en Ligne Les développements limités sont l'outil principal d' approximation locale des fonc- tions 2 2 Exercices 2 5 Corrigé du devoir fonction f admet un développement limité d'ordre n en a, si et seulement si g admet



[PDF] Exercices - Développements limités : corrigé Calculs de DLs

ln(1 + x) sin x = 1 − x 2 + x2 2 − x3 3 + o(x3) Exercice 4 - DLs pas en 0 - L1 /Math Sup - ⋆ 1 On pose x =2 



[PDF] Daniel Alibert - Cours et exercices corrigés - volume 4 - Walanta

Daniel Alibert – Cours et Exercices corrigés – Volume 4 12 1-3 Développements limités Théorème Formule de Taylor-Young Soit f une fonction définie sur un 



[PDF] Développement limités Exercices chapitre 17 Méthodes et savoir

Mathématiques Lycée Berthollet Connaître parfaitement les développements limités des fonctions usuelles : exercices 1 et 10 — Savoir calculer un Obtenir un développement limité par intégration : exercice 6 et 16 — Obtenir une limite 



[PDF] USTV 2012/2013 - Gloria FACCANONI

11 fév 2013 · On a inclus dans ce texte nombreux exercices corrigés Ceux-ci, de Exercices Exercice 1 1 Somme et produit de développements limités



[PDF] Développements limités - Exo7 - Cours de mathématiques

Mini-exercices 1 Écrire les trois formules de Taylor en 0 pour x → cos x, x → exp (−x) et x → sh x 



[PDF] 16-formules-de-taylor-corriges - Optimal Sup Spé

Formules de Taylor Développements limités Aides à la résolution et correction des exercices Maths SUP - Filière MPSI OPTIMAL SUP-SPE - Concours 2016



[PDF] Exo7 - Exercices de mathématiques - COURSES

Exo7 Développements limités Corrections d'Arnaud Bodin 1 Calculs Exercice 1 Donner le développement limité en 0 des fonctions : 1 cosx·expx à l'ordre 3

[PDF] exercices corrigés développement limité pdf

[PDF] exercices corrigés diagonalisation trigonalisation matrices pdf

[PDF] exercices corrigés dimensionnement gsm

[PDF] exercices corrigés dimensionnement gsm pdf

[PDF] exercices corrigés droit des sociétés

[PDF] exercices corrigés droit des sociétés ohada pdf

[PDF] exercices corrigés echantillonnage

[PDF] exercices corrigés economie internationale

[PDF] exercices corrigés en chimie

[PDF] exercices corrigés en chimie de solution pdf

[PDF] exercices corrigés en chimie générale

[PDF] exercices corrigés en chimie organique

[PDF] exercices corrigés en chimie organique pdf

[PDF] exercices corrigés en mécanique

[PDF] exercices corrigés en mécanique des fluides pdf

Licence MIASHS - 2014/2015 Analyse 1 (MI001AX)

Corrigé (des exercices 1-8) du TD n

o9 - Formules de TaylorCorrigé de l"exercice 11. (a) Formule de Taylor-Young : supposons quefsoit de classeCnsur

I. Alors, pour touth?Rtel quex0+happartienne àIon peut écrire f(x0+h) =f(x0) +hf?(x0) +h22! f(2)(x0) +···+hnn!f(n)(x0) +hnε(h) n? k=0h kk!f(k)(x0) +hnε(h) oùε(h)est une fonction qui tend vers0quandhtend vers0. (b) Formule de Taylor-Lagrange : supposons quefsoit de classeCn+1surI. Alors, pour tout h?Rtel quex0+happartienne àI, il existeθ?]0,1[tel que l"on ait f(x0+h) =n? k=0h kk!f(k)(x0) +hn+1(n+ 1)!f(n+1)(x0+θh) (notons ici queθdépend deh).

2. La partie principale de la série de Taylor defenx0à l"ordrenest le polynôme

n k=0h kk!f(k)(x0) (par convention,0! = 1! = 1).

3. Un développement limité defenx0à l"ordrenest la donnée d"un polynômePde degréntel que

l"on ait, pour touthtel quex0+happartienne àI, f(x0+h) =P(h) +hnε(h) oùε(h)est une fonction qui tend vers0quandhtend vers0.

Corrigé de l"exercice 21. La fonctionf:x?→exest sa propre dérivée, et vaut1en0. Ainsi les

coefficientsf(k)(0)sont tous égaux à1; la formule de Taylor-Young en0à l"ordre4s"écrit donc :

e x= 1 +x+x22! +x33! +x44! +x4ε(x)

2. Commençons par calculer les 4 premières dérivées de la fonctionf:x?→lnx.

f(x) = lnx, f?(x) =1x , f??(x) =-x-2, f(3)(x) = 2x-3, f(4)(x) =-6x-4. Les valeurs respectives de ces fonctions en1sont0,1,-1,2et-6. La formule de Taylor-Young en

1à l"ordre4s"écrit donc :

ln(1 +h) =h-h22 +h33 -h44 +h4ε(x)

Il vient alors

ln(1 +h)-hh 2=12 +h3 -h24 +h2ε(x), d"où lim h→0ln(1 +h)-hh 2=12 1

3. La formule de Taylor-Young en2à l"ordre4pour la fonction polynomialeP(x) = 1 +x+x2+x3

s"écrit :

P(2 +h) =P(2) +hP?(2) +h22

P??(2) +h33!

P(3)(2).

En effet, commePest de degré3toutes ses dérivées à partir deP(4)sont nulles! D"autre part,

en regardant bien la formule ci-dessus, on réalise qu"il n"y a pas besoin de calculer les coefficients

P ?(2),P??(2)etP(3)(2). En effet, il suffit de calculerP(2 +h)pour expliciter la formule :

P(2 +h) = 1 + (2 +h) + (2 +h)2+ (2 +h)3

= 1 + 2 +h+ (h2+ 4h+ 4) + (h3+ 6h2+ 12h+ 8) = 15 + 17h+ 7h2+h3 Ce calcul permet au passage d"affirmer que :P(2) = 15,P?(2) = 17,P??(2) = 14etP(3)(2) = 6.

4. Commençons par calculer les 4 premières dérivées de la fonctionf:x?→⎷1-x2.

f(x) =?1-x2 f ?(x) =-2x2 ⎷1-x2=-x(1-x2)-1/2 f ??(x) =-(1-x2)-1/2-x((1-x2)-1/2)?=-(1-x2)-1/2-x(-12 )(-2x)(1-x2)-3/2 =-(1-x2)-3/2((1-x2) +x2) =-(1-x2)-3/2 f (3)(x) =32 (-2x)(1-x2)-5/2=-3x(1-x2)-5/2 f (4)(x) =-3(1-x2)-5/2-3x((1-x2)-5/2)? d"où f(0) = 1, f?(0) = 0, f??(0) =-1, f(3)(0) = 0, f(4)(0) =-3. La formule de Taylor-Young en0à l"ordre4s"écrit donc : f(x) = 1-x22 -x48 +x4ε(x).

Remarque : ce calcul des dérivées successives de la fonctionfest extrêmement fastidieux. Nous ver-

rons plus loin qu"en composant des polynômes de Taylor de fonctions usuelles (que vous êtes censés

apprendre par coeur) on obtient la même formule de façon beaucoup plus efficace... Cela fournit du

même coup un procédé pour calculerf?(0),...,f(4)(0)sans avoir à calculerf?(x),...,f(4)(x).

Corrigé de l"exercice 3En appliquant Taylor-Lagrange pourx?→exau voisinage de0on trouve que, pour chaquex?R, il existeθ?]0,1[tel que e x= 1 +x+x22! +x33! +x44! +x55! +x66! eθx.

On applique cette formule àx=12

, ce qui donne : ⎷e= 1 +12

D"autre part, nous avons

e

θ/2<⎷e <2

d"où

16!×64eθ/2<16!×32<10-4.

Ceci montre que la somme des 6 premiers termes dans la formule (1) ci-dessus constitue une valeur approchée de⎷eà10-4près. 2 Corrigé de l"exercice 41. La formule de Taylor-Lagrange à l"ordre5en0pour la fonction sinus s"écrit sinx=x-x33! +x55! -x66! sinθx pour un certainθ?]0,1[dépendant dex.

2. En vertu de ce qui précède, nous avons

sinx-xx

2=-x3!

+x35! -x46! sinθx d"où lim x→0sinx-xx 2= 0.

3. Soitx≥0. Il est facile de voir que

x <6?x6 <1?x6! <15! ?x66!

Il en résulte que, quandx?[0,6[, alors

????x66! d"où x55! -x66! sinθx≥0. D"après la formule de la question 1, nous avons donc, pourx?[0,6[, sinx≥x-x36 D"autre part, on vérifie facilement que, pourx≥6, x-x36 On a donc montré, pour toutx≥0, l"inégalité x-x36

L"autre inégalité se montre par un procédé analogue, en faisant cette fois appel à la formule de

Taylor-Lagrange à l"ordre7.

Corrigé de l"exercice 5Le principe est le même que pour la question 3 de l"exercice précédent.

Corrigé de l"exercice 61. La formule de Taylor-Young pour sinus à l"ordre6en0nous dit que sinh=h-h33! +h55! +h6ε(h) d"où, en remplaçanthparx2, sin(x2) =x2-x63! +x105! +x12ε(x2) =x2-x63! +x9?x5! +x3ε(x2)?

Si on appelle à nouveau, par abus de notation,ε(x)la fonction entre parenthèses, nous obtenons

sin(x2) =x2-x63! +x9ε(x) 3 ce qui constitue en fait un développement limité desin(x2)à l"ordre9en0. D"autre part cosx= 1-x22 +x44! -x66! +x6ε(x). Or on peut additionner les développements limités. D"où : f(x) = sin(x2) + cosx = 1 +x2? 1-12 +x44! -x6?13! +16! +x6ε(x) = 1 + x22 +x424 -121720 x6+x6ε(x). ce qu"on cherchait.

2. Par définition de la fonction puissance, il vient

g(x) =e1x ln(1+x). Pour trouver le DL deg(x)à l"ordre2en0, on doit d"abord trouver le DL à l"ordre2en0de 1x ln(1 +x). Or le DL à l"ordre3en0deln(1 +x)s"écrit : ln(1 +x) =x-x22 +x33 +x3ε(x). en divisant le tout parx, on trouve 1x ln(1 +x) = 1-x2 +x23 +x2ε(x). ce qui constitue un DL d"ordre2en0de1x ln(1+x). Notons que cette opération a fonctionné parce que le terme constant du DL deln(1 +x)est nul. On doit maintenant composer ce DL avec le DL d"ordre2en1de la fonction exponentielle : en effet, le calcul que nous venons de faire prouve que, quandxest au voisinage de0, alors1x ln(1 +x)est au voisinage de1. Il vient : e

1+h=e×eh=e×?

1 +h+h22

+h2ε(h)

D"où, par composition des DL d"ordre2:

g(x) =e×? 1 +? -x2 +x23 +12 -x2 +x23 2? +x2ε(x) =e×? 1-x2 +x23 +12 x24 -x33 +x49 +x2ε(x) =e×? 1-x2 +1124
x2? +x2ε(x). Si l"on prolongegpar continuité en0en posantg(0) =e, alors la formule ci-dessus montre queg est dérivable en0, et que g ?(0) =-e2

3. Le DL de sinus à l"ordre4en0s"écrit

sinx=x-x33! +x4ε(x)

(notez bien que le terme de degré4est nul, comme tous les termes de degré pair d"ailleurs, ce qui

provient du fait que sinus est une fonction impaire). Quandxest au voisinage de0,sinxest lui

aussi au voisinage de0, donc on doit également considérer le DL deexà l"ordre4en0, à savoir :

e h= 1 +h+h22! +h33! +h44! +h4ε(h) = 1 +h+h22 +h36 +h424 +h4ε(h). 4

Il s"agit maintenant de composer les deux DL :

e sinx= 1 +? x-x36 +12 x-x36 2 +16 x-x36 3 +124
x-x36 4 +x4ε(x) = 1 +x-x36 +12 x 2-x33 +16 (x3+···) +124 (x4+···) +x4ε(x) = 1 +x+x22quotesdbs_dbs14.pdfusesText_20