[PDF] [PDF] Calcul matriciel

8 nov 2011 · AB a donc un sens : c'est une matrice à 3 lignes et 4 colonnes ( 0 1 −1 −2 que son noyau ne contient que la matrice nulle Si X A = 0 



Previous PDF Next PDF





[PDF] Matrices - Exo7 - Cours de mathématiques

Dans le calcul matriciel, la matrice nulle joue le rôle du nombre 0 pour les réels 1 3 Addition de matrices Définition 3 (Somme de deux matrices) Soient A et B 



[PDF] Généralités sur les matrices

Addition de deux matrices de même dimension ( ) et 2 Multiplication de deux matrices et de dimensions respectives et Matrice nulle : tous ses 



[PDF] Calcul matriciel

8 nov 2011 · AB a donc un sens : c'est une matrice à 3 lignes et 4 colonnes ( 0 1 −1 −2 que son noyau ne contient que la matrice nulle Si X A = 0 



[PDF] Matrices et déterminants

3 La matrice nulle est la matrice dont tous les coefficients sont nuls On la note 0np si elle a n lignes et p colonnes, 0 s'il n'y a pas d'ambigu¨ıté 4 Les matrices 



[PDF] Les matrices - Lycée dAdultes

matrices à m lignes et n colonnes à coefficients réels se note Mm,n() Une matrice A dont tous les éléments sont nuls est appelée matrice nulle : A =



[PDF] Matrices

Dans le calcul matriciel, la matrice nulle joue le rôle du nombre O pour les réels 1 3 Addition de matrices Définition 3 (Somme de deux matrices) Soient A et B 



[PDF] Déterminant dune matrice - FOAD - MOOC

Le déterminant d'une matrice est nul si et seulement si les vecteurs colonnes ( respectivement les vecteurs lignes) sont liés 0 48 48 A 12 6 84 A =



[PDF] Matrices inversibles

n'est pas la matrice nulle mais elle n'est pas inversible pour autant : quelle que soit la matrice par laquelle on la multiplie à droite, la première ligne du résultat 



[PDF] 1 Quest-ce que le déterminant dune matrice ? - Institut de

pour n = 2 et 3 puis d'essayer de généraliser au cas n quelconque □ En particulier, un déterminant est nul dès lors qu'une des colonnes est identiquement nulle



[PDF] Chapitre 2 1 24 Produits matriciels

il y a des diviseurs de O: si un produit de deux matrices est nul (toutes les composantes sont nulles) il peut arriver qu'aucune des deux matrices ne soit nulle

[PDF] tableau entrée sortie exercice corrigé

[PDF] question a poser a un auteur de livre

[PDF] matrice nilpotente exemple

[PDF] matrice nilpotente propriété

[PDF] on ne badine pas avec l'amour

[PDF] cours graphes tes pdf

[PDF] exercice matrice spe maths es

[PDF] cours graphes probabilistes

[PDF] le mystère de la chambre jaune questionnaire lecture

[PDF] le mystère de la chambre jaune reponse

[PDF] le mystère de la chambre jaune audio

[PDF] qu'est qu'un diviseur

[PDF] exemple de diviseur

[PDF] qu est ce qu un multiple de 9

[PDF] qu est ce qu un divisible

Université Joseph Fourier, Grenoble Maths en Ligne

Calcul matriciel

Bernard Ycart

Ce chapitre est essentiellement technique et ne requiert pas d"autre connaissance théorique que celle des espaces vectoriels de dimension finie. Vous y apprendrez les manipulations élémentaires de matrices, qui ne devraient pas vous poser de problème si vous avez bien compris la résolution des systèmes linéaires.

Table des matières

1 Cours 1

1.1 Opérations sur les matrices . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Matrices carrées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Matrices et applications linéaires . . . . . . . . . . . . . . . . . . . . . 6

1.4 Rang d"une matrice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Calcul de l"inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Entraînement 16

2.1 Vrai ou faux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 QCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Corrigé du devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Compléments 30

3.1 Les avocats de Cambridge . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Diagonalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Décomposition LU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8 novembre 2011

Maths en LigneCalcul matricielUJF Grenoble1 Cours

1.1 Opérations sur les matrices

Etant donnés deux entiersmetnstrictement positifs, unematrice àmlignes etn colonnesest un tableau rectangulaire de réelsA= (ai,j). L"indice de ligneiva de1à m, l"indice de colonnejva de1àn.

A= (ai,j) =(

(((((((a a a m,1···am,j···am,n) Les entiersmetnsont lesdimensionsde la matrice,ai,jest soncoefficient d"ordre (i,j). L"ensemble des matrices àmlignes etncolonnes et à coefficients réels est noté M m,n(R). Ce qui suit s"applique aussi, si on remplaceRparC, à l"ensemble des matrices

à coefficients complexes.

L"ensembleMm,n(R)est naturellement muni d"une addition interne (on peut ajou- ter deux matrices de mêmes dimensions terme à terme) et d"une multiplication externe (on peut multiplier une matrice par un réel terme à terme). •Addition :SiA= (ai,j)etB= (bi,j)sont deux matrices deMm,n(R), leur somme

A+Best la matrice(ai,j+bi,j). Par exemple :

(1 1 2 3 1-1) (-3 1 5-3 0 2) (-2 2 7 0 1 1) •Multiplication externe :SiA= (ai,j)est une matrice deMm,n(R), etλest un réel, le produitλAest la matrice(λai,j). Par exemple : -2( (1 1 2 3 1-1) (-2-2 -4-6 -2 2) Observons que les opérations auraient le même effet si les matrices étaient disposées comme desmn-uplets de réels (toutes les lignes étant concaténées par exemple). Donc M m,n(R), muni de son addition et de sa multiplication externe, est un espace vectoriel, isomorphe àRmn. Labase canoniquedeMm,n(R)est formée des matrices dont tous les coefficients sont nuls, sauf un qui vaut1. L"opération la plus importante est leproduit matriciel. 1

Maths en LigneCalcul matricielUJF GrenobleDéfinition 1.Soientm,n,ptrois entiers strictement positifs. SoitA= (ai,j)une

matrice deMm,n(R)et soitB= (bj,k)une matrice deMn,p(R). On appelleproduit matricieldeAparBla matriceC? Mm,p(R)dont le terme généralci,kest défini, pour touti= 1,...,met pour toutk?1,...,ppar : c i,k=n j=1a i,jbj,k. Nous insistons sur le fait que le produitABde deux matrices n"est défini que si le nombre de colonnes deAet le nombre de lignes deBsont les mêmes. Observons d"abord que la définition 1 est cohérente avec la définition du produit d"une matrice par un vecteur, donnée au chapitre précédent : sip= 1, la matriceBanlignes et1 colonne, et le produitABamlignes et1colonne. D"autre part, appliquer la définition

1 revient à effectuer successivement le produit deApar chacune des colonnes deB.

Pour effectuer ce produit, nous conseillons d"adopter la même disposition que pour le produit par un vecteur, en plaçantBau-dessus et à droite deA. (((((((b

···bj,k···.........

b n,1···bn,k···bn,p) (((((((a

1,1··· ···a1,n.........

a a m,1··· ···am,n) (((((((c

1,1...c1,p...

··· ···ci,k

c m,1cm,p)

Posons par exemple :

A=( (1 1 2 3 1-1) )etB=?0 1-1-2 -3-2 0 1? La matriceAa 3 lignes et 2 colonnes, la matriceBa 2 lignes et 4 colonnes. Le produit ABa donc un sens : c"est une matrice à 3 lignes et 4 colonnes. ?0 1-1-2 -3-2 0 1? (1 1 2 3 1-1) (-3-1-1-1 -9-4-2-1

3 3-1-3)

Le produit matriciel a toutes les propriétés que l"on attend d"un produit, sauf qu"il n"est pas commutatif. 2

Maths en LigneCalcul matricielUJF GrenobleProposition 1.Le produit matriciel possède les propriétés suivantes.

1.Associativité :Si les produitsABetBCsont définis, alors les produitsA(BC)

et(AB)Cle sont aussi et ils sont égaux.

A(BC) = (AB)C .

2.Linéarité à droite :SiBetCsont deux matrices de mêmes dimensions, siλet

μsont deux réels et siAa autant de colonnes queBetCont de lignes, alors

A(λB+μC) =λAB+μAC .

3.Linéarité à gauche :SiAetBsont deux matrices de mêmes dimensions, siλet

μsont deux réels et siCa autant de lignes queAetBont de colonnes, alors (λA+μB)C=λAC+μBC . Ces propriétés se démontrent à partir de la définition 1. La transposition est une notion importante, dont la justification provient de la dualité, qui dépasse le cadre de ce cours. Définition 2.Étant donnée une matriceA= (ai,j)deMm,n(R), satransposéeest la matrice deMn,m(R)dont le coefficient d"ordre(j,i)estai,j. Pour écrire la transposée d"une matrice, il suffit de transformer ses lignes en co- lonnes. Par exemple : A=( (1 1 2 3 1-1) ),tA=?1 2 1

1 3-1?

Observons que la transposée de la transposée est la matrice initiale. t (tA) =A . La transposée d"un produit est le produit des transposées, mais il faut inverser l"ordre des facteurs. Proposition 2.Soientm,n,ptrois entiers strictement positifs. SoientA= (ai,j)une matrice deMm,n(R)etB= (bj,k)une matrice deMn,p(R). La transposée du produit deAparBest le produit de la transposée deBpar la transposée deA. t (AB) =tBtA . 3

Maths en LigneCalcul matricielUJF GrenoblePar exemple, en reprenant les matricesAetBdéfinies ci-dessus :

?1 2 1

1 3-1?

(((0-3 1-2 -1 0 -2 1) (((-3-9 3 -1-4 3 -1-2-1 -1-1-3) Observons que le produit d"une matrice par sa transposée est toujours défini. A tA=( (2 5 0

5 13-1

0-1 2)

),tAA=?6 6 6 11? Le résultat est une matricecarrée(autant de lignes que de colonnes) etsymétrique. Définition 3.Soitnun entier strictement positif etAune matrice carrée ànlignes etncolonnes. On dit queAest symétrique si pour tousi,j= 1,...,n, ses coefficients

d"ordreai,jetaj,isont égaux, ce qui est équivalent à dire queAest égale à sa transposée.

Le produit d"une matrice par sa transposée est toujours une matrice symétrique.

En effet :

t(AtA) =t(tA)tA=AtA .

1.2 Matrices carrées

En général si le produitABest défini, le produitBAn"a aucune raison de l"être. Le produit d"une matrice par sa transposée est une exception, les matrices carrées en sont une autre : siAetBsont deux matrices ànlignes etncolonnes, les produitsAB etBAsont tous deux définis et ils ont les mêmes dimensions queAetB. En général ils ne sont pas égaux. Par exemple, ?0-1 1 0? 0 1

1 0? ?

1 0 0-1?? 0 1 1 0? 0-1

1 0? ?

-1 0 0 1? Nous noterons simplementMnl"ensembleMn,n(R)des matrices carrées ànlignes et ncolonnes, à coefficients réels. Parmi elles lamatrice identité, notéeInjoue un rôle particulier. I n=( ((((((((1 0··· ···0 0 1 ...........................1 0

0··· ···0 1)

4

Maths en LigneCalcul matricielUJF GrenobleEn effet, elle est l"élément neutre du produit matriciel : pour toute matriceA?

M n,m(R), AI n=ImA=A . On le vérifie facilement à partir de la définition 1. Définition 4.SoitAune matrice deMn. On dit queAest inversible s"il existe une matrice deMn, notéeA-1, telle que AA -1=A-1A=In.

Par exemple :

(1 0-1 1-1 0

1-1 1)

(1-1 1 1-2 1

0-1 1)

(1-1 1 1-2 1

0-1 1)

(1 0-1 1-1 0

1-1 1)

(1 0 0 0 1 0

0 0 1)

Nous verrons plus loin une méthode qui permet de savoir si une matrice est inversible, et de calculer son inverse quand elle l"est. Observons que l"inverse, s"il existe, est néces- sairement unique. En effet, soientB1etB2deux matrices telles queAB1=B1A=In etAB2=B2A=In. En utilisant l"associativité, le produitB1AB2vautB1(AB2) = B

1In=B1, mais aussi(B1A)B2=InB2=B2. DoncB1=B2.

Il suffit de trouver une matriceBtelle queAB=Inpour être sûr queAest inversible et que son inverse estB. Théorème 1.SoitAune matrice deMn. Supposons qu"il existe une matriceBtelle queAB=Inou bienB A=In. AlorsAest inversible etB=A-1. Démonstration: Supposons qu"il existe une matriceBtelle queAB=In. Consi- dérons l"application, deMndans lui-même, qui à une matriceXassocie le produit X A. D"après le point3de la proposition 1, c"est une application linéaire, donc un endomorphisme de l"espace vectorielMn. Montrons qu"elle est injective, c"est-à-dire que son noyau ne contient que la matrice nulle. SiX A= 0, alors(X A)B= 0, mais (X A)B=X(AB) =X In=Xpar hypothèse : doncX= 0. Une application linéaire entre deux espaces de même dimension qui est injective est aussi surjective. Donc il existe une matriceXtelle queX A=In. Il reste à vérifier que cette matrice estB. Si X A=AB=In, alorsX(AB) =Xet(X A)B=B. D"où le résultat. On procède de façon symétrique siB A=In, en considérant l"application qui àX associeAX. SiAetBsont deux matrices inversibles deMn, leur produit est inversible. Proposition 3.SoientAetBdeux matrices inversibles deMn. Le produitABest inversible et son inverse estB-1A-1. Démonstration: Nous utilisons le théorème 1, ainsi que l"associativité du produit : (B-1A-1)(AB) =B-1(A-1A)B=B-1InB=B-1B=In. 5 Maths en LigneCalcul matricielUJF Grenoble1.3 Matrices et applications linéaires SoientEetFdeux espaces vectoriels de dimension finie, munis respectivement des bases(b1,...,bn)et(c1,...,cm). Une application linéairefest déterminée par les images des vecteursb1,...,bn. Ces images sont des combinaisons linéairesc1,...,cm: pour toutj= 1,...,n, f(bj) =m? i=1a i,jci. Les coordonnéesai,jde ces vecteurs dans la base(c1,...,cm), rangés enncolonnes, forment la matrice de l"applicationf, relative aux bases considérées.

1,1···a1,j···a1,nc

1..........

a i,1···ai,j···ai,nc iarrivée.......... a m,1···am,j···am,nc m Les opérations sur les applications linéaires se traduisent en des opérations analogues sur les matrices. Soientf,gdeux applications linéaires deEdansFetλ,μdeux réels. Si les matrices defetg(relatives aux mêmes bases au départ et à l"arrivée) sontA etB, alors la matrice deλf+μgestλA+μB. La composée de deux applications linéaires est encore une application linéaire. Sa matrice est le produit des matrices de fetg. Proposition 4.SoientE,F,Gtrois espaces vectoriels,fune application linéaire de

EdansFetgune application linéaire deFdansG.

f g

E-→F-→G

u?-→f(u)?-→g◦f(u) =g(f(u)). Soient(b1,...,bn)une base deE,(c1,...,cm)une base deFet(d1,...,dp)une base deG. SoitAla matrice defrelative aux bases(b1,...,bn)et(c1,...,cm). SoitBla matrice degrelative aux bases(c1,...,cm)et(d1,...,dp). Alors la matrice deg◦frelative aux bases(b1,...,bn)et(d1,...,dp)est le produitBA. Remarquez que l"ordre dans lequel s"effectue le produit est l"ordre dans lequel s"écrit la composition.quotesdbs_dbs4.pdfusesText_8