[PDF] [PDF] I Exercices

Calculer la dérivée et dresser le tableau de variation de chacune des Il est fortement conseillé, notamment `a ceux qui comptent faire des maths apr`es le bac,



Previous PDF Next PDF





[PDF] Exercices de dérivation (Première ES)

Exercice 3 : Max ou Min Soit la fonction g définie sur ℝ par g(x) = 4x3 – 5x2 + 1 1) Calculer la dérivée de g 2) Etudier le signe de g' 3) En déduire les variations  



[PDF] Corrigé : Exercices de dérivation (Première ES) 2√x √x 2√x 2√x

Corrigé : Exercices de dérivation (Première ES) Exercice 1 : (Utilisation des formules) Dériver les fonctions suivantes en précisant le domaine de dérivabilité :



[PDF] Dérivation - application Premi`ere S ES STI - Exercices Corrigés en

Dérivation - application Premi`ere S ES STI - Exercices Corrigés en vidéo avec le cours sur jaicompris com Étude des variations d'une fonction polynôme de 



[PDF] Première ES-L IE2 dérivation 2015-2016 S1 1 Exercice 1 : taux d

Donc g'(-2) = 12 25 Page 4 Première ES-L IE2 dérivation 2015-2016 S1 CORRECTION 4 Exercice 2 : tangente à une courbe (4 points) On considère la  



[PDF] Exercices corrigés sur la dérivation dans R - Math2Cool

Dérivation-Exercices corrigés Exercices Exercice 1 : déterminer le nombre dérivé d'une fonction Soit f la En mode RUN-MATH, utiliser les instructions F4



[PDF] Dérivation - Exercices - Dyrassa

Page 1 sur 4 Première E S – Lycée Desfontaines – Melle Dérivation - Exercices Exercice 1 : Calculer le nombre dérivé de la fonction f en a : 1 f(x)=-x2+x+1 en 



[PDF] I Exercices

Calculer la dérivée et dresser le tableau de variation de chacune des Il est fortement conseillé, notamment `a ceux qui comptent faire des maths apr`es le bac,



[PDF] Exercices supplémentaires – Dérivation

3) Etudier la position relative de et Exercice 4 On considère la fonction définie sur par 2 1) Déterminer une équation de la tangente à la courbe 



[PDF] Fiche dexercices 3 : Dérivation - Physique et Maths

Exercice 1 Dans chacun des cas suivants, montrer que la fonction est dérivable en utilisant la définition du nombre dérivé et calculer sa valeur au point a 1 ( )



[PDF] Exercices supplémentaires : Application de la dérivation

Justifier Exercice 2 Dans chaque cas, calculer la dérivée de la fonction puis déterminer les variations de 1) : ↦ sur

[PDF] exercices corrigés maths 1ere es pourcentages

[PDF] exercices corrigés maths 1ere es suites

[PDF] exercices corrigés maths 3ème

[PDF] exercices corrigés maths 3ème pdf calcul littéral

[PDF] exercices corrigés maths 3ème thalès

[PDF] exercices corrigés maths fonctions

[PDF] exercices corrigés maths fonctions affines

[PDF] exercices corrigés maths fonctions dérivées

[PDF] exercices corrigés maths premiere s pdf

[PDF] exercices corrigés maths seconde declic

[PDF] exercices corrigés maths seconde fonction affine

[PDF] exercices corrigés maths seconde fonctions

[PDF] exercices corrigés maths suites numériques

[PDF] exercices corrigés maths suites terminale es

[PDF] exercices corrigés maths suites terminale s

de la 1`ereS `a la TS.Chapitre 3 : D´erivation

I Exercices

1 D´erivabilit´e

Etudier la d´erivabilit´e des fonctions suivantes au pointdemand´e

1.f(x) =x2enx= 3 (Revenir `a la d´efinition du nombre d´eriv´e)

2.f(x) =⎷

xenx= 1.

3.f(x) =⎷

xenx= 0.

4.f(x) =|x|enx= 0.

5.f(x) =x⎷

xenx= 0.

6.f(x) = (x-1)⎷

1-x2enx=-1.

7.f(x) = (x-1)⎷

1-x2enx= 1. (plus difficile)

Aide

R´eponses

2 Calculs de fonctions d´eriv´ees

Calculer les d´eriv´ees des fonctions suivantes. C"est un exercice d"entraˆınement au calcul, on ne demande pas de d´eterminer les ensembles sur lesquels les fonctions sont d´erivables.

1.f(x) = 4x3-3x2+x-7.

2.f(x) =4x-1

7x+ 2.

3.f(x) =x

x2-3.

4.f(x) = 6⎷

x.

5.f(x) = 4sinx+ cos(2x).

6.f(x) = cos(-2x+ 5).

7.f(x) = sinx2.

8.f(x) = sin2x. (Que l"on peut aussi noter (sinx)2)

9.f(x) = tanx.

10.f(x) = (2x-5)4. (D´eveloppement d´econseill´e)

11.f(x) =7

x2-9.

12.f(x) =⎷

4x2-3.

13.f(x) =1

⎷x2+ 3.

14.f(x) =?4x-1

x+ 2? 3 Aide

R´eponses

L.BILLOT 1DDL

de la 1`ereS `a la TS.Chapitre 3 : D´erivation

3 Sens de variation d"une fonction

Calculer la d´eriv´ee et dresser le tableau de variation de chacune des fonctions suivantes sur l"ensemble indiqu´e. (Les limites ne sont pas demand´ees).

1.f(x) =2

3x3-12x2-6x+ 1 surR.

2.f(x) =x-5

x+ 2surR- {-2}.

3.f(x) =5

x2-1surR- {-1;1}.

Remarque :

Il y a davantage d"´etudes de fonctions dans le chapitre d´edi´e. Aide

R´eponses

4´Equation de tangente

Dans chacun des cas suivants, d´eterminer une ´equation de la tangente `a la courbe repr´esentative de la fonctionfau point demand´e.

1.f(x) = 2x2-5x+ 1 enx= 1.

2.f(x) =2x-3

x+ 2enx=-1.

3.f(x) =⎷

2x-5 enx= 4.

4.f(x) = cos?

2x-π

6? enx=π3. Aide

R´eponses

5 Approximation affine

Cette partie, qui n"est pas la mieux connue par les ´el`eves entrant en terminale, sera

pourtant n´ecessaire cette ann´ee dans l"application de lam´ethode d"Euler, m´ethode com-

mune aux maths et `a la physique. D´eterminer l"approximation affine des fonctions suivantesau point demand´e.

1.f(x) =1

x2+ 1en 2.

2.f(x) = sinxen 0.

3.f(x) = tanxen 0.

4.f(x) =1

1 +xen 0.

5.f(x) =⎷

1 +xen 0

Aide

R´eponses

L.BILLOT 2DDL

de la 1`ereS `a la TS.Chapitre 3 : D´erivation

II Aide

1 D´erivabilit´e

Les deux d´efinitions ci-dessous sont ´equivalentes :

Premi`ere version :

Soitfune fonction d´efinie sur un intervalleIeta?I, on dit que la fonctionfest d´erivable enasi la limite lorsquextend versadef(x)-f(a) x-aest finie.

Dans ce cas on ´ecrit : lim

x→af(x)-f(a) x-a=f?(a), et ce nombre est appel´e nombre d´eriv´e de la fonctionfena.

Deuxi`eme version :

Soitfune fonction d´efinie sur un intervalleIeta?I, on dit que la fonctionfest d´erivable enasi la limite lorsquehtend vers 0 def(a+h)-f(a) hest finie.

Dans ce cas on ´ecrit : lim

h→0f(a+h)-f(a) h=f?(a), et ce nombre est appel´e nombre d´eriv´e de la fonctionfena.

Remarque :

Une ´etude de d´erivabilit´e revient donc `a un calcul de limite. Cette limite est toujours ind´etermin´ee au d´epart.

Retour

2 Calcul : Formulaire de d´erivation

D´eriv´ees des fonctions usuelles

f(x)f?(x)fonction d´erivable sur k(constante)0R xn(avecn?N?)nxn-1R 1 x-1x2]- ∞;0[ou]0;+∞[ 1 xn(avecn?N?)-nxn+1]- ∞;0[ou]0;+∞[ ⎷x1

2⎷x]0;+∞[

cosx-sinxR sinxcosxR

Op´erations sur les d´eriv´ees

uetvsont des fonctions d´erivables (u+v)?=u?+v? (ku)?=ku?(aveck?R) (uv)?=u?v+uv? (un)?=n×u?×un-1avecn?N? ?1 u? =-u?u2avecune s"annulant pas. u v? ?=u?v-uv?v2avecvne s"annulant pas. u)?=u?2⎷uavecustrictement positive. (u◦v) = (u?◦v)×v?.

Retour

L.BILLOT 3DDL

de la 1`ereS `a la TS.Chapitre 3 : D´erivation

3 Sens de variation d"une fonction

Une fonction d´erivable sur un intervalleIest : •croissante surIsi et seulement si sa d´eriv´ee est positive surI. •d´ecroissante surIsi et seulement si sa d´eriv´ee est n´egative surI. Pour revoir les m´ethodes permettant d"´etudier le signe duexpression on peut se reporter au chapitre : "´Equations, ´etudes de signes et in´equations".

Retour

4´Equation de tangente

Pour d´eterminer une ´equation de tangente `a la courbe repr´esentative de la fonctionf au point d"abscissea:

Premi`ere m´ethode :

Je sais quef(a) me donne l"ordonn´ee du point et quef?(a) me donne le coefficient directeur de la tangente. Avec ces deux informations je trouve l"´equation de la tangente.

Deuxi`eme m´ethode :

Je connais la formule de l"´equation de la tangente :y=f?(a)(x-a) +f(a). Il est fortement conseill´e, notamment `a ceux qui comptentfaire des maths apr`es le bac, de connaˆıtre cette formule.

Retour

5 Approximation affine

L"id´ee :

Si une fonctionfest d´erivable enaalors, au voisinage dea, je peux approcherf par une fonction affine. Soitfune fonction d´erivable ena, alors sixest proche dea, on a :f(x)≈f?(a)(x-a) +f(a).

Ce qui peut aussi s"´ecrire :

f(x) =f(a) +f?(x)(x-a) + (x-a)ε(x), avec limx→aε(x) = 0.Graphiquement : af(a)

Retour

L.BILLOT 4DDL

de la 1`ereS `a la TS.Chapitre 3 : D´erivation

III Correction

1 D´erivabilit´e

1. Pour la premi`ere question, j"utilise les deux versions.Dans la suite j"alterne pour

vous permettre de vous habituer. lim x→3f(x)-f(3) x-3= limx→3x

2-32x-3

= lim x→3(x-3)(x+ 3) x-3= limx→3x+ 3 = 6

Ou bien :

lim h→0f(3 +h)-f(3) h= limh→0(3 +h)2-32h = lim h→09 + 6h+h2-9 h= limh→06 +h= 6 Donc la fonction est d´erivable en 3 etf?(3) = 6.

2. lim

x→1f(x)-f(1) x-1= limx→1⎷ x-1 x-1 = lim x→0⎷x-1 (⎷x+ 1)(⎷x-1) = lim x→01 ⎷x+ 1 =1 2 Donc la fonctionfest d´erivable en 1, etf?(1) =1 2.

3. Le domaine de d´efinition est [0,+∞[, donc je calcule la limite en 0 par valeurs

sup´erieures. lim h >→0f(0 +h)-f(0) h= lim h >→0⎷ h h = lim h >→01 ⎷h(ici,hest positif)

Donc la fonctionfn"est pas d´erivable en 0.

4. Je s´epare les limites par valeurs sup´erieures et inf´erieures, six >0, alors|x|=xet

six <0, alors|x|=-x. lim x <→0f(x)-f(0) x-0= lim x <→0|x|x = lim x <→0-x x =-1

L.BILLOT 5DDL

de la 1`ereS `a la TS.Chapitre 3 : D´erivation et : lim x >→0f(x)-f(0)x-0= lim x >→0|x|x = lim x <→0x x = 1 Il y a une limite `a gauche et une limite `a droite diff´erentes, donc la limite du taux d"accroissement n"existe pas, et la fonctionfn"est pas d´erivable en 0.

5. lim

h→0f(0 +h)-f(0) h= limh→0h⎷ h h = limh→0⎷ h = 0 Donc la fonctionfest d´erivable en 0, etf?(0) = 0.quotesdbs_dbs19.pdfusesText_25