[PDF] [PDF] Exercice 1 :

Représentation de la surface de von Mises dans l'état des contraintes principales Page 16 TD3 : MATERIAUX ELASTIQUES Matériau isotrope élastique linéaire



Previous PDF Next PDF





[PDF] Exercice 1 :

Représentation de la surface de von Mises dans l'état des contraintes principales Page 16 TD3 : MATERIAUX ELASTIQUES Matériau isotrope élastique linéaire



[PDF] M´ECANIQUE DES MILIEUX CONTINUS - Mines Saint-Etienne

20 fév 2004 · 1 5 Exercices 4 3 4 Thermo-élasticité linéaire 68 poth` ese d'une loi de comportement élastique linéaire du matériau



[PDF] ÉLASTICITÉ - ORBi

Les équations de l'élasticité linéaire sont établies au chapitre 4 De nombreux exercices sont inclus Exercice 1 Calculer l'expression (a × b) · (c × d)



[PDF] Résistance des matériaux : élasticité, méthodes - IUT Le Mans

20 jui 2011 · 4 2 11 Exercice : élasticité plane Ce syst`eme d'équations linéaires n'a pas de solution : la matrice de rigidité est une matrice singuli`ere



[PDF] Exercices corrigés - Guilhem Mollon

Exercice A Soit le massif rectangulaire de grande longueur représenté sur la figure suivante : On pose plusieurs hypothèses : -Comportement élastique linéaire 



[PDF] TP 7 : Problèmes complexes : élasticité linéaire

Exercice 1 Déformation d'un barrage due à la pression de l'eau Considérons un barrage de forme triangulaire (voir figure) On note par u = (u1,u2) le vecteur 



[PDF] Elasticité MMC_Page de garde - ISET Gafsa

à rédiger un support de cours pour le module « Elasticité- EXERCICE D' APPLICATION L'allongement (dilatation linéaire) d'un vecteur dX dX N = uuur uur



[PDF] Exercice 1 : Dynamique dune barre rectiligne - ENSTA Paris

Le comportement est élastique linéaire et isotrope (exercices 1 et 3) ou Dans cet exercice, seuls les mouvements de traction-compression de la barre sont 



[PDF] Banque publique dexercices - PédagoTech de Toulouse INP

9 sept 2018 · d'un matériau élastique linéaire isotrope et on note λ et µ ses coefficients de Lamé 1) Donner l'expression du tenseur des contraintes σ(a) en 

[PDF] élasticité linéaire exercice corrigé

[PDF] élasticité linéaire isotrope

[PDF] élasticité logarithme

[PDF] elasticité mercatique calcul

[PDF] élasticité prix de l'offre calcul

[PDF] élasticité prix de l'offre definition

[PDF] elasticité prix de la demande monopole

[PDF] électifs sciences po

[PDF] election parents d'élèves 2016 2017

[PDF] election parents d'élèves 2017 2018

[PDF] election parents d'élèves 2018

[PDF] election primaire 2016

[PDF] election representants des parents d'eleves 2017

[PDF] elections au conseil d'administration des eple

[PDF] élections des représentants de parents d'élèves 2017 2018

TD 1 : Déformations

Exercice 1 :

Figure 1 : disque soumis à glissement simple

Un disque plat est soumis à du glissement simple (Figure 1).

Calculer :

le tenseur gradient de la transformation le tenseur des dilatations de Cauchy-Green la dilatation selon les trois axes X 1, X2 l"angle entre les axes 1 et 2 après transformation le tenseur des déformations de Green-Lagrange la déformation selon les trois axes le tenseur petites déformations -2-1012 -2 -1012 x1 x2 -2-1012 -2 -1012 -2-1012 -2 -1012 x1x1 x2x2 121
2 2 3

3/3xXX

x X x

X=+=+=+=+========

Tenseur gradient de la transformation

Tenseur des dilatations de Cauchy-Green

Dilatation dans une direction

Glissement de deux directions orthogonales

t0p[1]:=0: t0p[2]:=1: t0p[3]:=0: alpha:=Angle(C,t0,t0p); déformation de Green-Lagrange

Hypothèse des petites perturbations

déplacement en fonction des coordonnées tenseur H

Tenseur des petites déformations

Différence entre E et eeee

Exercice 2 : Déformation uniaxiale

Un solide est déformé en déformation uni-axiale. selon X1. : où t correspond au temps et b est une constante arbitraire.

Calculer :

le tenseur gradient de la transformation le tenseur des dilatations de Cauchy-Green la dilatation selon les trois axes X1, X2 l"angle entre les axes 1 et 2 après transformation le tenseur des déformations de Green-Lagrange la déformation selon les trois axes le tenseur gradient des déplacements le tenseur petites déformations

Définition de la transformation

description de la transformation

Tenseur gradient de la transformation

Tenseur des dilatations de Gauchy-Green

Dilatation dans la direction des trois axes

angle entre deux directions déformation de Green-Lagrange déformation dans les trois axes

Hypothèse des petites perturbations

Tenseur des petites déformations

TD2 : CONTRAINTES

Exercice 1 :

Mohr a montré la propriété intéressante suivante pour le tenseur des contraintes, indépendante du comportement du matériau et des conditions aux limites. Considérons l©état de contraintes au point x du volume V. Considérons un état plan de contraintes szz=szx=szy=0). Dans l©espace des contraintes de traction s et des contraintes de cisaillement t, l©état de contrainte au point x décrit un cercle si l©on considère toutes les facettes possibles autour du point x. st 2a t max sxxsyysaa tab

Démontrer que :

Si l©angle entre la facette considérée et l©axe des x est a dans l©espace physique réelle, l©état de contrainte sur cette facette sera représenté par le point faisant un angle 2 a avec l©axe des s dans l©espace (s,t). IIs a aas abt y x dSa a a Isa 2 pa- IIs a aas abt y x dSa a a Isa 2 pa- st 2a t max sxxsyysaa tab

Equilibre suivant eaaaa

sin()sin() cos()cos()0I

IIdsdSds

dS aaaaaaaaaaaaaaaaaaaaaaaassssssssssss aaaaaaaassss----

Equilibre suivant ebbbb

cos()sin() sin()cos()0I

IIdsdSds

dS abaaabaaabaaabaaaaaaaaaatsstsstsstss aaaaaaaassss++++

Eliminer dS

bbs xxIss= yyIIss= a aas bbs abt abt aas y x ebea bbs xxIss= yyII ss= a aas bbs abt abt aas y x ebea aas xxIss= yyIIss= abtX Z Y1 a aas xxIss= yyIIss= abtX Z Y1 a IIs a aas abt y x dSa a a Isa 2 pa- IIs a aas abt y x dSa a a Isa 2 pa- Exprimer toutes les quantités en fonction de 2aaaa.

1cos(2)1cos(2)

(((())))sin(2)

2IIIababababaaaassssttttssss====----

cos(2)22 cos(2)22 (((())))sin(2)

2IIIababababaaaassssttttssss====----

Dans l"espace (s,t) c"est l"équation d"un cercle de centre (()/2IIIssssssss++++,0) et de rayon ()/2IIIssssssss----.

La contrainte de cisaillement maximale vaut

t max=(smax -smin)/2.

Exercice 2 :

a) Calculer la contrainte moyenne ms, le déviateur des contraintes msIss=-et la contrainte de von Mises s en traction uniaxiale. b) Calculer la contrainte moyenne ms, le déviateur des contraintes msIss=-et la contrainte de von Mises s en traction biaxiale. Chercher la forme des courbes tanconstes=dans le plan des contraintes principales sI et sII. c) Dans l"espace des contraintes principales sI, sII.et sIII chercher la forme de la surface tanconstes=.

Traction uni-axiale

ssssssss 00 000 000 ssss ssss 200

0103001

sssss

3mssssssss====

2quotesdbs_dbs14.pdfusesText_20