[PDF] [PDF] Fiche aide-mémoire 7 : Commutant dune matrice 1 Des remarques

Si M commute avec la matrice A qui est carrée d'ordre n, alors les produits AM et MA ont Pour trouver le commutant d'une matrice diagonale (ou d'une matrice 



Previous PDF Next PDF





[PDF] Fiche aide-mémoire 7 : Commutant dune matrice 1 Des remarques

Si M commute avec la matrice A qui est carrée d'ordre n, alors les produits AM et MA ont Pour trouver le commutant d'une matrice diagonale (ou d'une matrice 



[PDF] corrreduc - copie

X2 + X = A, on commencera par remarquer qu'une telle matrice commute (a) Trouver les matrices qui commutent avec une matrice car- rée diagonale à coefficients distincts Soit D une matrice diagonale de Mn(K) à coefficients diagonaux



[PDF] PMI Durée : 1 heure et 30 minutes Partie CCP - Licence de

(e) Déterminer le commutant de la matrice T ainsi que sa dimension Donner un exemple d'endomorphisme diagonalisable tel que dim C(u) = n, puis donner un matrices commute avec A Par suite, on a l'inclusion Vect{I3, A, A2} ⊂ C(A)



[PDF] MPSI 2 DS 07

Réciproquement, une matrice diagonale commute avec toute matrice diagonale Q 8 Montrons que ( X2 = A ) (i) ⇐⇒



[PDF] Problème : Commutant de certaine matrice Dans ce problème, n est

Soit D ∈ Mn(K) diagonale de coefficients diagonaux d1,··· ,dn deux à deux distincts 1 Montrer que l'ensemble des matrices de C(D) est l'ensemble des matrices 



[PDF] Commutant dune matrice

x On suppose dans cette question que PA est à racines simples α, β et γ a Montrer que la matrice A est diagonalisable b Soit B une matrice de M3(c) qui commute 



[PDF] Corrigé DS4

Réciproquement, toute matrice diagonale commute avec D qui est elle-même diagonale Finalement, les matrices qui commutent avec D sont les matrices 



[PDF] Partie 0 Un exemple Partie I Commutant dun - Maths-francefr

Si u est l'endomorphisme de Cn dont la matrice dans la base canonique est la matrice M de la partie 0, u est diagonalisable et dim(C(u)) = n Partie II



[PDF] Classe de TSI2 - Exercices de mathématiques

5) Déterminer toutes les matrices de M3(R) qui commutent avec la matrice D trouvée à la Réciproquement, toute matrice diagonale commute avec D En

[PDF] commutant d'une matrice triangulaire

[PDF] la thébaïde racine commentaire

[PDF] la thébaïde texte intégral

[PDF] la thébaïde résumé court

[PDF] la thébaïde racine pdf

[PDF] la thébaïde acte i scène 1 analyse

[PDF] suite de matrice convergente

[PDF] convergence suite matricielle

[PDF] determiner l'ensemble des matrices qui commutent avec a

[PDF] puissance nième d'une matrice triangulaire

[PDF] puissance de matrice exercices corrigés

[PDF] puissance nième d'une matrice carrée

[PDF] conclusion des voyages de james cook

[PDF] ami de maupassant

[PDF] le trone de fer ebook gratuit

F. HECHNER, ÉCÉ 2, Collège Épiscopal Saint Étienne Année 2014-2015

Fiche aide-mémoire 7 :

Commutant d"une matrice.

Beaucoup de sujets de concours s"intéressent à la détermination du commutant d"une matriceA:

Définition :

SoitAune matrice carrée d"ordren.

On appellecommutant deAl"ensemble des matricesMqui commutent avecA, c"est-à-dire telles queAM=

MA. On le note généralementC(A). Ainsi :

C(A) =fMatricesMtelles queAM=MAg=fMjAM=MAg:

Les questions concernant le commutant sont souvent les mêmes. Les résultats suivant sont à retenir.

1 Des remarques pour commencer

•La matrice nulle deMn(R)appartient àC(A). En effet,0A= 0etA0 = 0. •La matrice identité deMn(R)appartient àC(A). En effet,AI=AetIA=A. •La matriceAappartient àC(A). En effet,A:A=A2etA:A=A2(!). •Les puissances deAappartiennent àC(A). En effet,A:Ak=Ak+1etAk:A=Ak+1, ce8k2N.

2 Le commutant deAest un sous-espace vectoriel deMn(R).

Ce résultat se démontre de deux façons :

2.1 Démonstration directe

•SiMcommute avec la matriceAqui est carrée d"ordren, alors les produitsAMetMAont tous les deux

un sens :Mest donc carrée d"ordren. Ainsi,C(A) Mn(R). •La matrice nulle (au choix, ou l"identité, ouA) appartient àC(A), doncC(A)6=;. •SoientMetNdeux matrices deC(A). Alors par définitionAM=MAetAN=NA. Montrons que M+N2C(A). CommeAM=MAetAN=NA, on aA(M+N) =AM+AN=MA+NA= (M+N):A, ce qui montre queM+N2C(A). •SoitMune matrice deC(A)et2R. Alors par définitionAM=MA. Montrons queM2C(A). Comme AM=MA, et que2Ron aA(M) =(AM) =(MA) = (M)A. Ainsi,M2C(A). •Finalement,C(A)est un sous-espace vectoriel deMn(R).

2.2 Le commutant vu comme le noyau d"une application linéaire.

On remarque, comme précédemment, queC(A) Mn(R). On considère l"application

A:Mn(R)! Mn(R)

M7!AMMA:

•'Aest un endomorphisme deMn(R). En effet, on remarque déjà que l"ensemble de départ et d"arrivée de

Asont les mêmes. Il suffit donc de montrer que'Aest linéaire. SoientMetNdeux matrices carrées d"ordren,

etdeux réels. Alors'A(M+N) =A(M+N)(M+N)A=AM+ANMANAcaret sont des réels. D"autre part,'A(M)+'A(N) =(AMMA)+(ANNA) =AMMA+ANNA et donc'A(M+N) ='A(M) +'A(N). Ainsi,'est linéaire. •Ker('A) =C(A). En effet, soitM2Ker('A). AlorsAMMA= 0, doncAM=MA:M2C(A)et donc Ker('A)C(A). Réciproquement, soitM2C(A). AlorsAM=MA, doncAMMA= 0ce qui prouve queM2Ker('A)et donc queC(A)Ker('A). Finalement, on a bien Ker('A) =C(A). •C(A)est un sous-espace vectoriel deMn(R): c"est le noyau d"un endomorphisme deMn(R). 1/2 F. HECHNER, ÉCÉ 2, Collège Épiscopal Saint Étienne Année 2014-2015

3 Commutant d"une matrice diagonale

Pour trouver le commutant d"une matrice diagonale (ou d"une matrice "simple" au sens où elle comporte

beaucoup de zéros), on effectue généralement les calculs coefficient par coefficient (ce qui amène à résoudre

un système den2équations àn2inconnues.

Il peut être utile de retenir que :

•Multiplier à droite une matriceMpar une matrice diagonaleD(i.e. faire le produitMD) revient à multiplier

les colonnes deMpar les coefficients correspondants deD.

•Multiplier à gauche une matriceMpar une matrice diagonaleD(i.e. faire le produitDM) revient à multi-

plier les lignes deMpar les coefficients correspondants deD.

Exemple :Cherchons le commutant deD:=0

@0 0 0 01 0

0 0 11

A SoitMune matrice deC(D). CherchonsMsous la formeM=0 @a b c d e f g h i1 A . On aMD=0 @0b c 0e f 0h i1 A et DM=0 @0 0 0 def g h i1 A doncMD=DM()( b= 0; c= 0;d= 0 f=f; g= 0; h= 0()M=0 @a0 0 0e0 0 0i1 A

Finalement,C(D)est formé de toutes les matrices d"ordre3diagonales. C"est donc un sous-espace vectoriel

deM3(R)de dimension3. Précisément, une base en est0 @0 @1 0 0 0 0 0

0 0 01

A ;0 @0 0 0 0 1 0

0 0 01

A ;0 @0 0 0 0 0 0

0 0 11

A1 A (on a vu

que cette famille était génératrice puisque on a trouvé queMs"écritafois la première plusefois la deuxième

plusifois la troisième), et on montre aisément qu"elle est libre). Remarque :En fait, dans le cas oùDest diagonale,et que toutes les valeurs propres deDsont deux

à deux distinctes(i.e. les coefficients diagonaux deDsont tous différents),C(D)est l"ensemble des matrices

diagonales. Dans ce cas, on peut même montrer queI;D;D2;:::;Dn1est une base deC(D)(rappelons que nest l"ordre deD). Exemple (retour). Montrons que(I;D;D2)est une base deC(D). Comme c"est une famille de trois vecteurs

et queC(D)est de dimension trois, il suffit de montrer que la famille est libre. Soienta;b;ctrois réels

tels queaI+bD+cD2= 0. CommeaI+bD+cD2=0 @a0 0 0a0 0 0a1 A +0 @0 0 0 0b0 0 0b1 A +0 @0 0 0 0c0 0 0c1 A 0 @a0 0

0ab+c0

0 0a+b+c1

A ,aI+bD+cD2= 0donne immédiatement8 :a= 0 b+c= 0 b+c= 0, donca=b=c= 0: la famille(I;D;D2)est libre. Finalement,(I;D;D2)est une base deC(D).

4 Cas général : obtention du commutant par diagonalisation!

SiAest diagonalisable, on peut trouver une matricePinversible, et une matrice diagonaleD, telles queA=

PDP

1. On remarque alors queAM=MA()PDP1M=MPDP1()DP1M=P1MPDP1()DP1MP=

P

1MPD()DN=NDoùN=P1MP.

Ainsi, on a l"équivalenceM2C(A)()N2C(D)oùN=P1MPetA=PDP1. On peut donc déduire le commutant deAde celui deD. Remarque :dans tous les cas, laissez-vous guider par l"énoncé! 2/2quotesdbs_dbs26.pdfusesText_32