[PDF] [PDF] Les symboles somme et produit - Lycée dAdultes

27 fév 2017 · Les symboles somme et produit 2 Le symbole produit D 9 Soit I un sous- ensemble fini de N, la somme de tous les termes ai, i décrivant I



Previous PDF Next PDF





[PDF] Rappel : Le produit est le résultat dune multiplication La somme est

Exercice : traduire par un calcul les phrases suivantes : 1- Effectuer le produit de 45 par 6 2- Effectuer la somme de 12 et de 7 3- Effectuer le produit de la 



[PDF] Les symboles somme et produit - Lycée dAdultes

27 fév 2017 · Les symboles somme et produit 2 Le symbole produit D 9 Soit I un sous- ensemble fini de N, la somme de tous les termes ai, i décrivant I



[PDF] Sommes, produits, récurrence - Normale Sup

18 sept 2010 · lettre sans changer la valeur de la somme On choisit traditionnellement les lettres i, j, k, etc pour les indices de sommes • Dans une somme, 



[PDF] la somme du produit de 12 par 3 et de 5 b

1) Ecrire une phrase qui décrit chaque expression numérique: a) 12 × 3 + 5 est la somme dont les termes sont 12 × 3 et 5 ou : la somme du produit de 12 par 3 



[PDF] Sommes et produits - MPSI Corot

Une somme ne dépend que de ses bornes et du terme général sommé 1 2 Règles de calcul Linéarité de la somme : ∑



[PDF] La méthode produit-somme : Cette méthode consiste à calculer le

La méthode produit-somme : Cette méthode consiste à calculer le produit a×c premier et troisième terme du polynôme : a 2 + +c Ensuite écrire le  



[PDF] Sommes et produits finis :∑ et ∏

Exercice 6: Somme géométrique Soit q un nombre réel (ou complexe) différent de 1 et n un entier fixé 1 Calculer (1 − q) n ∑ k=0



[PDF] exercices de mathématiques en cinquième Correction - Mathovore

Exercice : Traduis chaque phrase par un calcul : · F est le produit de 4 par la somme de 12 et de 5 · 



[PDF] Sommes et produits

Après un changement d'indice, le nombre de termes dans la somme doit rester inchangé Exemples : E 1 p X k=2

[PDF] les déterminants de la productivité du travail

[PDF] la productivité d'une entreprise

[PDF] les facteurs de la croissance économique pdf

[PDF] les facteurs de la croissance économique résumé

[PDF] source de croissance économique

[PDF] comment les facteurs de production peuvent contribuer ? la croissance économique

[PDF] semi conducteur extrinsèque pdf

[PDF] exercice corrigé semi conducteur intrinsèque

[PDF] resistance des materiaux exercices corrigés pdf

[PDF] calcul contrainte de von mises

[PDF] semi conducteur intrinsèque extrinsèque

[PDF] cours physique des semi conducteurs

[PDF] diagonale d'un carré de 3m

[PDF] diagonale d'un cube

[PDF] calculer diagonale d'un rectangle

[PDF] Les symboles somme et produit - Lycée dAdultes DERNIÈRE IMPRESSION LE27 février 2017 à 15:46

Les symboles somme et produit

Table des matières

1 Le symbole sommeΣ2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Linéarité et changement d"indice. . . . . . . . . . . . . . . . . . . . 3

1.3 Sommes télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Sommes à connaître. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Sommes doubles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Le symbole produitΠ9

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Relation produit - somme. . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Produits télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 9

PAUL MILAN1VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1 Le symbole sommeΣ

1.1 Définition

Définition 1 :Soit(ai)une suite de nombres réels ou complexes. Soit deux entiers naturelsnetptels quep?n, on définit la somme suivante par : n∑ k=pa k=ap+ap+1+···+an Soit I un sous-ensemble fini deN, la somme de tous les termesai,idécrivant I sera notée∑ i?Ia i

Remarque :

•La variablekest une variable muette, c"est à dire qu"une fois la somme calculée, le résultat ne dépend plus dek. On peut donc lui donner le nom qu"on veut :i, j,k, etc. à exception des bornes de la somme, icipetn:n∑ k=pa k=n∑ i=pa i=n∑ j=pa j

•On retrouve cette variable muette, lorsque l"on veut calculer une somme àl"aide d"un algorithme. (boucle Pour)

•Lorsque les termes de la somme ne dépendent pas de la variable, on somme des termes constants donc : n∑ k=03=3+3···+3? n+1 termes=3(n+1)

•Si I={2;4;6}alors∑

i?Ia i=a2+a4+a6.

Exemples :

•1+2+···+n=n∑

k=1k.

•1+2+22+···+2n=n∑

k=02k. •1 n+1+1n+2+···+12n=n∑ k=11n+k.

•1+3+5+···+(2n-1) =n∑

k=1(2k-1). ?Ne pas confondre : n∑ k=1(k+1) =n∑ k=1k+navecn∑ k=1k+1 les parenthèses font toute la différence. n∑ k=022k(n+1 termes) et2n∑ k=02k(2n+1 termes) Propriété 1 :Relation de Chasles et linéarité :

Relation de Chasles :

n∑ k=pa k= m∑ k=pa k+n∑ k= m+1 ak

L"opérateur somme est linéaire :

n∑ k=p(αak+βbk) =αn∑ k=pa k+βn∑ k=pb k.

PAUL MILAN2VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

Exemple :n∑

k=0a k=

2∑

k=0a k+n∑ k= 3 aketn∑ k=0(3k+4k) =n∑ k=03k+4n∑ k=0k

1.2 Linéarité et changement d"indice

Propriété 2 :Changement d"indice.

L"expression à l"aide du symbole

∑n"est pas unique. On peut écrire une somme avec des indices différents. Les changements d"indicesk→k+p(translation)k→p-k(symétrie) sont les plus fréquents :n∑ k=1a k=n+p k=p+1a k-p=p-1 k=p-na p-k

Exemples :Calculer la somme :Sn=n∑

k=1?

1k-1k+1?

•On utilise la linéarité :Sn=n∑

k=11k-n∑ k=11k+1 •On effectue un changement d"indice sur la deuxième somme :k→k+1 : S n=n∑ k=11 k-n+1∑ k=21k. k=21k-n∑ k=21k-k=n+1? ???1 n+1=1-1n+1

Pourn?2, on considère la sommeSn=n+1∑

k=2k22k-1. Faire une translation d"indice pour que la nouvelle variable varieentre 0 et(n-1) et une symétrie d"indice pour que la nouvelle variable varie entre 2et(n+1). •Pour la translation, il suffit de faire :k→k-2, on a alors : S n=n-1∑ k=0(k+2)22(k+2)-1=n-1∑ k=0(k+2)22k+3 •Pour la symétrie, il faut déterminer le milieu :2+ (n+1)2=n+32. On effectue alors la symétriek→n+3-k, on a alors : S n=n+1∑ k=2(n+3-k)22(n+3-k)-1=n+1∑ k=2(n+3-k)22n+5-2k

PAUL MILAN3VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.3 Sommes télescopiques

Théorème 1 :Sommes télescopiques

Soit une suite(an)une suite de nombres réels ou complexes, on a : ?n,p?N,p?n,n∑ k=p(ak+1-ak) =an+1-ap

Remarque :n∑

k=0(ak+1-ak) =an+1-a0etn∑ k=0(bk-bk+1) =b0-bn+1

Démonstration :On pose :Sn=n∑

k=p(ak+1-ak)

•On utilise la linéarité :Sn=n∑

k=pa k+1-n∑ k=pa k •On effectue un changement d"indice sur la première somme :k→k+1 S n=n+1∑ k=p+1a k-n∑ k=pa k •On sépare les termes différents :Sn=an+1+n∑ k=p+1a k-n∑ k=p+1a k-ap=an+1-ap Exemples :Lessommestélescopiquessontuneméthodetrèsefficacepourcalcu- ler la somme des termes d"une suite(un). Il s"agit de trouver une suite(vn)pour queun=vn+1-vn. Ce n"est bien sûr pas toujours possible malheureusement.

Calculer les sommes suivantes :

•Sn=n∑

k=11k(k+1): on décompose1k(k+1)en1k-1k+1 S n=n∑ k=11 k(k+1)=n∑ k=1?

1k-1k+1?

=1-1n+1.

•Rn=n∑

k=1k×k! : on décomposek×k! en(k+1)k!-k!= (k+1)!-k! R n=n∑ k=1k×k!=n∑ k=1[ (k+1)!-k!]= (n+1)!-1

•Tn=n∑

k=11k(k+1)(k+2) a k(k+1)-a(k+1)(k+2)=a(k+2)-akk(k+1)(k+2)=2ak(k+1)(k+2), on aa=12 T n=n∑ k=11 k(k+1)(k+2)=12n∑ k=1?

1k(k+1)-1(k+1)(k+2)?

1 2?

12-1(n+1)(n+2)?

n(n+3)

4(n+1)(n+2)

PAUL MILAN4VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.4 Sommes à connaître

Théorème 2 :Somme des entiers, des carrés, des cubes Pour tout entier naturelnnon nul, on a les relations suivantes :

•S1(n) =n∑

k=1k=1+2+···+n=n(n+1)2

•S2(n) =n∑

k=1k2=1+4+···+n2=n(n+1)(2n+1)6

•S3(n) =n∑

k=1k3=1+8+···+n3=n2(n+1)24 Démonstration :La première formule a été démontré en première en ordon- nant la somme dans l"ordre croissant puis dans l"ordre décroissant. Les deux der- nières formules ont été démontré en terminale par récurrence. Mais les démons- trations directes sont possibles à l"aide de sommes télescopiques. On pourrait généraliser ces démonstration aux somme des puissancespième des entiers na- turels.

•S1(n), on utilise la sommen∑

k=1[(k+1)2-k2] = (n+1)2-1 n∑ k=1[(k+1)2-k2] =n∑ k=1(k2+2k+1-k2) =n∑ k=1(2k+1) =2n∑ k=1k+n∑ k=11=2S1(n) +n

On en déduit que :

2S1(n) +n= (n+1)2-1?S1(n) =(n+1)2-(n+1)

2=n(n+1)2

S2(n), on utilise la sommen∑

k=1[(k+1)3-k3] = (n+1)3-1 n∑ k=1[(k+1)3-k3] =n∑ k=1(k3+3k2+3k+1-k3) =n∑ k=1(3k2+3k+1) =3n∑ k=1k2+3n∑ k=1k+n∑ k=11=3S2(n) +3S1(n) +n

On en déduit que :

3S2(n)+3S1(n)+n= (n+1)3-1?3S2(n) =?(n+1)3-1-3S1(n)-n??

S 2=1 3? (n+1)3-3n(n+1)2-(n+1)? =2(n+1)3-3n(n+1)-2(n+1)6 (n+1)(2n2+4n+2-3n-2)

6=(n+1)(2n2+n)6=n(n+1)(2n+1)6

PAUL MILAN5VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

•S3(n), on utilise la sommen∑

k=1[(k+1)4-k4] = (n+1)4-1 n∑ k=1[(k+1)4-k4] =n∑ k=1(k4+4k3+6k2+4k+1-k4) =n∑ k=1(4k3+6k2+4k+1) =4n∑ k=1k3+6n∑ k=1k2+4n∑ k=1k+n∑ k=11=4S3(n) +6S2(n) +4S1(n)+n

On en déduit que :

4S3(n) +6S2(n) +4S1(n) +n= (n+1)4-1?

4S2(n) = (n+1)4-1-6S2(n)-4S1(n)-n

= (n+1)4-n(n+1)(2n+1)-2n(n+1)-(n+1) = (n+1)? (n+1)3-n(2n+1)-2n-1? = (n+1)(n3+3n2+3n+1-2n2-n-2n-1) = (n+1)(n3+n2) =n2(n+1)2

Théorème 3 :Somme géométrique

Pour tous naturelspetntels quep?n

et pour tout réel ou complexextel quex?=1, on a : n∑ k=pxk=xp×1-xn+1-p

1-x=premier terme×1-xNbre de termes1-x

Démonstration :PosonsSn=n∑

k=pxk.

•On utilise une somme télescopique :

S n-xSn=n∑ k=pxk-n∑ k=pxk+1=n∑ k=p(xk-xk+1) =xp-xn+1 •On factorise :Sn(1-x) =xp(1-xn+1-p)x?=1?Sn=xp×1-xn+1-p1-x

Exemple :S=n∑

k=32k=23×1-2n-2

1-2=23(2n-2-1) =2n+1-8

Théorème 4 :Factorisation standard

Pour tout naturelnet pour tous réels ou complexesaetb, on a : a n-bn= (a-b) n-1∑ k=0an-k-1bk= (a-b)(an-1+an-2b+···+abn-2+bn-1)

PAUL MILAN6VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

Démonstration :On pose :Sn=n-1∑

k=0an-k-1bk, on a alors :

•aSn=n-1∑

k=0an-kbk=an+n-1∑ k=1an-kbkk→k+1=an+n-2∑ k=0an-k-1bk+1

•bSn=n-1∑

k=0an-k-1bk+1=n-2∑ k=0an-k-1bk+1+bn k=0an-k-1bk+1-n-2∑ k=0an-k-1bk+1-bn=an-bn

1.5 Sommes doubles

Définition 2 :Lorsqu"on somme sur deux indices, on parle de somme double. Soit(aij)une suite double de nombres réels ou complexes et soit deux entiers naturelsnetp, on note :

1?i?n1?j?pa

ij=n∑ i=1p j=1a ij=p j=1n∑ i=1a ijsomme des termes d"un tableaun×p. 1?i ?j?na ij=n∑ j=1 j i=1a ij=n∑ i=1n∑ j=i aijsomme triangulaire d"un tableaun2. 1?i Remarque :On peut noter :∑

1?i,j?na

ij=∑

1?i?n1?j?na

ij On peut schématiser ces sommes double par un tableau double entrée.quotesdbs_dbs28.pdfusesText_34