[PDF] Géométrie dans lespace

PDF



Previous PDF Next PDF





Géométrie dans lespace - Lycée dAdultes

1 5 Section d'un cube et d'un tétraèdre par un plan 5 1 TERMINALE S 



Géométrie dans lespace

trie dans l'espace 1 Définition : On dit que deux droites sont parallèles s'il existe un plan dans lequel elles sont Propriété : La section d'un cube par un plan peut-être :



Géométrie dans lespace – Exercices

trie dans l'espace – Exercices – Terminale S – G AURIOL, Lycée Paul Sabatier Géométrie dans 5 Construire les sections des cubes et tétraèdres suivants Pour les trois cubes 



Géométrie dans lespace en terminale S

Géométrie dans l'espace en terminale S Sommaire Sujets ÉduSCOL 15 Distance de deux droites dans l'espace Section plane d'un tétraèdre et optimisation d'une 



Douine – Terminale S – Activités – Chapitre 6 – Géométrie

oints distincts de l'espace définissent un plan à condition que ces trois points ne soient pas alignés, 



Géométrie dans lespace

3 F Laroche G éom étrie dans l'espace 2 T racer la section du cube par le plan (IJK) A B F





TS Exercices sur droites et plans de lespace

chaque cas, tracer la section du cube ABCDEFGH par le plan (IJK) Cet exercice s'appuie sur la vision dans l'espace et un peu aussi sur le raisonnement Exemple : Le plan 



Chapitre 13 Droites, plans et vecteurs de lespace - Maths

eux droites sont coplanaires, d'après le cours de géométrie plane, Dessiner la section du plan (EFG) par le plan (ABM) utilisées dans la pratique de terminale S que les équations paramétriques

[PDF] géométrie du triangle pdf

[PDF] géométrie élémentaire pdf

[PDF] géométrie en bac pro

[PDF] geometrie espace

[PDF] geometrie espace bac pro

[PDF] geometrie espace produit cartesien youtube

[PDF] geometrie espace second e

[PDF] géométrie espace seconde

[PDF] géométrie mentale ce2

[PDF] géométrie mentale cm1

[PDF] géométrie mentale cm2

[PDF] géométrie mentale cycle 2

[PDF] géométrie mentale cycle 3

[PDF] geometrie mentale fiche pdf 5 eme

[PDF] geometrie niveau bac

Terminale S

4 5

1.1. Plan de l'espace ...................................................................................................................................... 51.2. Position relative de deux droites ............................................................................................................... 6

1.3. Exercice ................................................................................................................................................. 61.4. Position relative de deux plans ................................................................................................................. 71.5. Exercice ................................................................................................................................................. 7

2.1. Droites parallèles à un plan ..................................................................................................................... 72.2. Exercice : Montrer qu'une droite est parallèle à un plan .............................................................................. 82.3. Exercice : Utiliser le théorème du toit dans un tétraèdre .............................................................................. 9

2.4. Plans parallèles ..................................................................................................................................... 102.5. Exercice : Demontrer que deux plans sont paralleles ............................................................................. 10

2.6. Exercice : Construire la section d'un solide par un plan ............................................................................. 10

3.1. Droites orthogonales .............................................................................................................................. 113.2. Orthogonalité Droite-Plan ...................................................................................................................... 11

3.3. Plan médiateur ..................................................................................................................................... 123.4. Exercice : Démontrer une orthogonalité .................................................................................................... 12

13 19 23
27
30

Rappel

Fondamental

Définition

coplanaires coplanaires On considère le parallélépipède suivant : Fondamental : Dans l'espace, deux plans peuvent être ... On considère le parallélépipède suivant :

Fondamental

Fondamental : Théorème du toit

Attention

d d' d//d' [Solution n°1 p 30] (IK)(ABC)

Indice :

On pourra montrer que est parallèle à une droite du plan (IK)(ABC) [Solution n°2 p 30] [Solution n°3 p 30]

Indice :

On pourra utiliser le théorème du toit

Fondamental : Premier théorème

Fondamental : Second théorème

[Solution n°4 p 30]

Indice :

Pour prouver que deux plans sont paralleles, il suffit de trouver deux droites secantes d'un plan qui

sont paralleles a l'autre plan. [Solution n°5 p 31]

Définition

orthogonales

Remarque

perpendiculaire

Exemple

ABCDEFGH(AE)(GH)

(AE)(GH)

Fondamental

Définition

orthogonale à un plan

Complément

Exemple

(d)BCGF(BM)(CM)

Fondamental : Propriétés

Définition

[AB]AB

Fondamental

[AB](AB) [AB] [Solution n°6 p 32] ABCD (CD)(AB)

Indices :

Dans un tétraèdre régulier, toutes les arrêtes sont de la même longueur.

On pourra construire le point milieu de I[CD]

Définition

colinéairest

Remarque

Complément

dépendants indépendantslibres [Solution n°7 p 32] [Solution n°8 p 33]

Indice :

On pourra remarquer que

[Solution n°9 p 33]

IJKL(AC)(IJKL)

Indice :

On pourra exprimer en fonction de

[Solution n°10 p 33] (BD)(IJKL)

Fondamental : Caractérisation d'une droite

M vecteur directeur

Fondamental : Caractérisation d'un plan

M xyA

Fondamental : Conséquences

[Solution n°11 p 34]

Indice :

On pourra utiliser de manière astucieuse la relation de Chalses [Solution n°12 p 34] [Solution n°13 p 34]

Indice :

Si une droite est incluse dans un plan , tout vecteur directeur de la droite est un vecteur du plan Cela est une conséquence directe de la . dernière propriété vue sur cette page* - p.27 [Solution n°14 p 34] [Solution n°15 p 35]

Indice :

On pourra utiliser un raisonnement par l'absurde.

Définition

coplanaires ABCD

Exemple

coplanaires

Fondamental

coplanaires

Complément : Démonstration

ABCD ABC ABCD D

Attention

Définition

indépendantslibres Dans le cube ci-contre, cochez les triplets de 3 vecteurs

Fondamental

coordonnéesMA

Complément : Démonstration

ABCDM ABC A M (ABC)H xyz AB

Fondamental : Coordonnées d'un vecteur

Fondamental : Coordonnées du milieu d'un segment [AB]

Fondamental : Norme d'un vecteur

Complément : Avec les coordonnées de vecteur [Solution n°16 p 35] [Solution n°17 p 35]

ABCDABCD

Fondamental

A A

Définition

représentation paramétrique

Exemple

t

Remarque

[Solution n°18 p 35] (AB)

Indice :

Un vecteur directeur de la droite est (AB)

[Solution n°19 p 35] [Solution n°20 p 36]

Indice :

Il faut déterminer s'il existe deux paramètres et permettant à un même triplet de coordonnées tt'

de vérifier les deux représentations paramétriques.(x ;y ;z) [Solution n°21 p 36] [Solution n°22 p 36] [Solution n°23 p 37]

Indice :

On pourra montrer qu'elles sont perpendiculaires

On pourra trouver deux points et respectivement sur et [Solution n°24 p 37]

Soit ABCD un tétraèdre.

I est le milieu du segment [BD] et J est le milieu du segment [BC]

L'intersection des plans (ACD) et (AIJ) est

ABCDEFGH

[EH][BF] (BIG) (AE)

Le point K

[AE] [AE] E est égal à

Les vecteurs , et sont

Le milieu du segment est :[KG]

[IB] [HJ] passe par le point de coordonnées a un vecteur directeur de coordonnées :

Les droites et sont

Le point est

Les vecteurs , et sont coplanaires

La droite est parallèle au plan (AB)(xOz)

La droite est parallèle à l'axe des ordonnées.(AB) La droite passant par le point et dirigée par et la droite (AB) sont coplanaires.

Fondamental : Caractérisation d'une droite

M vecteur directeur

Fondamental : Caractérisation d'un plan

M xyA

Fondamental : Conséquences

Fondamental

Fondamental : Théorème du toit

Attention

d d' d//d'

Exercice p. 10

Exercice p. 9

Exercice p. 9

Exercice p. 8

(SAC)

IK[SA][SC](IK)

(AC) (IK)(ABC)

Exercice p. 10

Pour la face AEFB

Pour la face EFGH

Pour la face CDHG

Pour la face ABCD

Pour finir

Exercice p. 14

Exercice p. 12

Méthode : 1ère méthode : A l'aide du plan médiateur ABI [CD] (CD)(AB) (AB)(CD) Méthode : 2ème méthode : Montrer que (CD) orthogonale à (ABI)

ADC(AI)A

BCD (AI)(BI)(ABI) (CD) (ABI)(CD) (AB)(CD)

Exercice p. 14

Exercice p. 14

Exercice p. 14

IJKL (AC)(IJKL)on peut affirmer - p.28 (AC)(IJKL)

Exercice p. 16

Exercice p. 16

Exercice p. 15

Exercice p. 15

(BD)(IJKL)

Utilisation de la relation de Chasles

propriétés vues précédemment - p.27

Exercice p. 21

Exercice p. 21

Exercice p. 20

Exercice p. 20

Exercice p. 16

les propriétés vues précédemment - p.27 B (AB)(CD)donc coplanaires - p.28 ABCD (AB)

Exercice p. 22

Exercice p. 22

Exercice p. 21

(x ;y ;z) (AB) t t t'

Exercice p. 22

Exercice p. 22

quotesdbs_dbs4.pdfusesText_7