[PDF] [PDF] Cours de Génie Electrique

Cours de Génie Electrique Caractéristique tension/courant d'une bobine mateur, systèmes polyphasés, machines électriques et conversion d'énergie ;



Previous PDF Next PDF





[PDF] Bobine (électricité) - Lyrfac

Une bobine, self, solénoïde, ou auto-inductance est un composant courant en électrotechnique et électronique Une bobine est constituée d'un bobinage ou 



[PDF] Cours Terminale - Les bobines 1 Présentation 11 - cloudfrontnet

Cours Terminale - Les bobines 1 Présentation 1 1 Description, symbole 1 2 Tension aux bornes d'une bobine 2 Etude du dipôle RL 2 1 Etude expérimentale



[PDF] LA BOBINE DINDUCTANCE

24 oct 2002 · Une bobine traversée par un courant produit un champ magnétique, elle se comporte, électrique et la transforme en énergie magnétique



[PDF] Cours délectrocinétique EC2-Bobine et condensateur - Physagreg

cas du condensateur et de la bobine qui sont donc aussi des dipôles En régime continu, toutes les grandeurs électriques sont constantes au cours du temps ;



[PDF] Courant électrique dans une bobine

Chapitre 12 Courant électrique dans une bobine tension aux bornes de la bobine et l'intensité qui En suivant ce qui a été fait en cours, on établit que : i = E



[PDF] Circuits magnétiques et inductance

Le champ magnétique créé se répand dans l'espace libre autour de la bobine, ou de façon semblable aux courants électriques, que le champ ”coule” dans le 



[PDF] inductances et bobines - IUTenligne

29 mai 2010 · Michel PIOU - Agrégé de génie électrique – IUT de Nantes - FRANCE (2)Dans ce cours: ϕ désignera toujours pour nous le flux dans 1 spire 



[PDF] Cours de Génie Electrique

Cours de Génie Electrique Caractéristique tension/courant d'une bobine mateur, systèmes polyphasés, machines électriques et conversion d'énergie ;



[PDF] LA BOBINE ET LE DIPOLE RL 1 Cocher les ou la - DevoirTN

Lorsque l'interrupteur est fermé, le sens conventionnel du courant électrique est de haut en bas dans la branche contenant la diode (du pôle positif au pôle négatif 



[PDF] Réponse dun dipôle RL à un échelon de tension Cours - TuniSchool

Conclusion : La présence de la bobine dans le circuit a créé ce retard temporel ∆t i(t) a la même allure que UR(t) donc le courant électrique s'établit avec un 

[PDF] new york a global city

[PDF] the drawbacks of big cities

[PDF] global city london

[PDF] london global city pdf

[PDF] global cities spaces and exchanges

[PDF] la performance globale de l'entreprise pdf

[PDF] performance globale définition

[PDF] mesure de la performance globale des entreprises

[PDF] reynaud 2003 la performance globale

[PDF] qu'est-ce que la performance globale

[PDF] bourguignon 1995

[PDF] concept de performance globale

[PDF] performance globale de l'entreprise définition

[PDF] repérage sur une sphère

[PDF] couple diaphragme vitesse et sensibilité iso

Licence Professionnelle de Génie Industriel

Université Paris VI-Jussieu; CFA Mecavenir Année 2003-2004

Cours de Génie Electrique

G.CHAGNON

2

Table des matières

Introduction11

1 Quelques mathématiques...12

1.1 Généralités sur les signaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2 Les classes de signaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2.1 Temps continu et temps discret . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2.2 Valeurs continues et valeurs discrètes . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.2.3 Période, fréquence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.3 Energie, puissance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.3.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.3.2 Remarques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 La Transformée de Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1.2 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2 Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2.1 Linéarité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2.2 Décalage en temps/fréquence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2.3 Dérivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.2.4 Dilatation en temps/fréquence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.2.5 Conjugaison complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.2.6 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.3 Représentation de Fourier des signaux d"énergie infinie . . . . . . . . . . . . . . . . . . . . . 19

1.2.3.1 Impulsion de Dirac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.3.2 Spectre des signaux périodiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.3.3 Cas particulier: peigne de Dirac . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Notion de filtre linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 Linéarité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.2 Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.3 Fonction de transfert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Généralités27

2.1 Le circuit électrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Circuits électriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2 Courant, tension, puissance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2.1 Courant électrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2.2 Différence de potentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2.3 Energie, puissance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2.4 Conventions générateur/récepteur . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.3 Lois de Kirchhoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.3.1 Loi des noeuds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.3.2 Loi des mailles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Dipôles électriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Le résistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1.1 L"effet résistif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1.2 Loi d"Ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3

4TABLE DES MATIÈRES

2.2.1.3 Aspect énergétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1.4 Associations de résistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 La bobine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2.1 Les effets inductif et auto-inductif . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2.2 Caractéristique tension/courant d"une bobine . . . . . . . . . . . . . . . . . . . . . 33

2.2.2.3 Aspect énergétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3 Le condensateur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3.1 L"effet capacitif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3.2 Caractéristique tension/courant d"un condensateur . . . . . . . . . . . . . . . . . . 34

2.2.3.3 Aspect énergétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Régime sinusoïdal, ouharmonique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Puissance en régime sinusoïdal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2.1 Puissance en régime périodique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2.2 Puissance instantanée en régime sinusoïdal . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2.3 Puissance moyenne en régime sinusoïdal . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Représentation complexe d"un signal harmonique . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.4 Impédances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4.1 Rappel: caractéristiques tension/courant . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4.2 Impédance complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4.3 Associations d"impédances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Spectre et fonction de transfert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Spectre d"un signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1.2 Signaux multipériodiques et apériodiques . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Fonction de transfert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Du semi-conducteur aux transistors 42

3.1 Les semi-conducteurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Semi-conducteurs intrinsèques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1.1 Réseau cristallin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1.2 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1.3 Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Semi-conducteurs extrinsèques de typen. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2.1 Réseau cristallin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2.2 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2.3 Modèle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.3 Semi-conducteurs extrinsèques de typep. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.3.1 Réseau cristallin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.3.2 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.3.3 Modèle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 La jonction PN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4 Barrière de potentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.5 Caractéristique électrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.5.2 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.5.3 Caractéristique et définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Le transistor bipolaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1.2 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1.3 Hypothèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1.4 Transistor au repos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Modes de fonctionnement du transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

TABLE DES MATIÈRES5

3.3.2.2 Blocage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2.3 Fonctionnement normal inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2.4 Fonctionnement normal inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2.5 Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Le transistor MOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Définitions et principe de fonctionnement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Systèmes analogiques55

4.1 Représentation quadripolaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.2 Matrice de transfert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.3 Exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.4 Impédances d"entrée/sortie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Contreréaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1.2 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1.3 Un exemple d"intérêt du bouclage . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Un peu de vocabulaire... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2.1 Les signaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2.2 Les((branches))de la boucle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2.3 Les gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Influence d"une perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.4 Exemples de systèmes à contreréaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.4.1 Exemple détaillé: une file de voitures sur l"autoroute . . . . . . . . . . . . . . . . 61

4.2.4.2 Autres exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Diagramme de Bode; Gabarit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Diagramme de Bode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1.2 Exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1.3 Les types de filtres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Gabarit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Bruit dans les composants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 Densité spectrale de puissance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.2 Les types de bruit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2.1 Bruit thermique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2.2 Bruit de grenaille . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2.3 Bruit en1=f. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2.4 Bruit en créneaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.3 Bruit dans un dipôle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.3.1 Température équivalente de bruit . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.3.2 Rapport de bruit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.4 Facteur de bruit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.4.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.4.2 Température de bruit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.4.3 Facteur de bruit d"un quadripôle passif . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.4.4 Théorème de Friiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Parasites radioélectriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 Les sources de parasites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.2 Classification des parasites... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.2.1 ... par leur propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.2.2 ... par leurs effets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.3 Les parades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6TABLE DES MATIÈRES

5 Systèmes numériques76

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.2 Représentation logique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.3 Familles de portes logiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Logique combinatoire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Les opérateurs de base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1.1 Les opérateurs simples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1.2 Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1.3 Les opérateurs((intermédiaires)). . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.2 Table de Karnaugh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2.1 Principe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2.2 Code binaire réfléchi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2.3 Exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.3 Quelques fonctions plus évoluées de la logique combinatoire . . . . . . . . . . . . . . . . . . 81

5.2.3.1 Codage, décodage, transcodage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2.3.2 Multiplexage, démultiplexage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.4 Fonctions arithmétiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.4.1 Fonctions logiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.4.2 Fonctions arithmétiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.5 Mémoire morte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.6 Le PAL et le PLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.6.1 Le PAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.6.2 Le PLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Logique séquentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1.1 Le caractère séquentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1.2 Systèmes synchrones et asynchrones . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1.3 Exemple: bascule RS asynchrone . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.2 Fonctions importantes de la logique séquentielle . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2.1 Bascules simples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.2.2 Bascules à fonctionnement en deux temps . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2.3 Registres (ensembles de bascules) . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.3 Synthèse des systèmes séquentiels synchrones . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.3.1 Registres de bascules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.3.2 Compteur programmable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.3.3 Unité centrale de contrôle et de traitement (CPU): microprocesseur . . . . . . . . . 94

5.4 Numérisation de l"information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.1 Le théorème de Shannon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.1.1 Nécessité de l"échantillonnage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.1.2 Exemple: échantillonnage d"une sinusoïde . . . . . . . . . . . . . . . . . . . . . . 95

5.4.1.3 Cas général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4.2 Les échantillonneurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.3 Convertisseur analogique/numérique (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.3.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.3.2 Les caractéristiques d"un CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.3.3 Quelques CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

quotesdbs_dbs4.pdfusesText_8