[PDF] [PDF] Machines thermiques Sommaire

Turbine à vapeur et centrale thermique à flamme 3 Turbine à gaz les réactions chimiques non équilibrées, dont la combustion, – le mélange Avantage : lecture directe de l'enthalpie et donc de l'énergie mise en œuvre dans les systèmes



Previous PDF Next PDF





[PDF] les moyens de production dénergie - version finale - ENEA Consulting

Les données techniques mises ici à disposition permettent d'objectiver l' intermittence autant que et les produits de réaction ne sont pas récupérés Dans une centrale thermique dite "à flamme", la chaleur de combustion dégagée dans Les centrales à biomasse solide mettent en œuvre une combustion directe de bio-



[PDF] Modernisation de la centrale thermique EDF du Havre - 2015

Une fois réparé, le rotor a été remis en place et raccordé à l'alternateur Objectif : Un rotor expertisé entièrement et remis à neuf A quoi sert le rotor : Mise en 



[PDF] Analyse des instabilités de combustion dans des foyers de centrale

20 oct 2015 · Flame responses subjected to acoustic modulations of the airflow Le parc de centrales thermiques à flammes est stratégique pour EDF pour ré- L' Anémométrie à phase Doppler (PDPA) a été mise en œuvre pour mesurer



[PDF] centrales à vapeur - Thermoptim

23 juil 2005 · c'est-à-dire à chaudière à flamme brûlant principalement du charbon ou du fioul, correspondent à un cycle de centrale thermique à flamme classique, dont les en œuvre avec les chaudières FP ou CP pour respecter la réactions chimiques plus complètes, ce qui permet aux chaudières à lit fluidisé de



[PDF] RDP : Bilan carbone dune centrale électrique thermique au gaz

Doc 2 : Les centrales thermiques à flamme Doc : Note energie thermique 2013 pdf /EDF Equation de combustion du méthane : CH4 + 2 O2 → CO2 + 2 H2O



[PDF] Cette sance est axe sur une recherche documentaire sur Internet

Equation-bilan - Maîtrise suffisante de l'ordinateur pour l'utilisation d'Internet Conditions de mise en oeuvre Durée : 55 minutes centrales thermiques comprennent les centrales thermiques nucléaires et les centrales thermiques à flamme



[PDF] Machines thermiques Sommaire

Turbine à vapeur et centrale thermique à flamme 3 Turbine à gaz les réactions chimiques non équilibrées, dont la combustion, – le mélange Avantage : lecture directe de l'enthalpie et donc de l'énergie mise en œuvre dans les systèmes



[PDF] Le défi énergétique - mediaeduscoleducationfr - Ministère de l

1- Centrale thermique à flamme Centrale thermique nucléaire Combustible utilisé : Renouvelable ? Fossile ou fissile ? Réaction mise en œuvre : Pollutions ?



[PDF] Egypte - Projet de Centrale thermique à cycle à vapeur 650 MW de

DU PROJET DE CENTRALE THERMIQUE A CYCLE A VAPEUR 650 MW DE SUEZ et de promouvoir l'intégration régionale par le biais de la mise en œuvre de Suite à cette réaction encourageante du marché, le gouvernement

[PDF] centrale thermique a flamme inconvénients

[PDF] centrale thermique a flamme en france

[PDF] centrale thermique a flamme gaz

[PDF] centrale thermique a flamme fossile ou fissile

[PDF] commande volet roulant legrand celiane

[PDF] centralisation volet roulant sans fil

[PDF] centraliser volet roulant electrique

[PDF] centralisation volet roulant filaire somfy

[PDF] kit de centralisation pour volets roulants

[PDF] centralisation volet roulant yokis

[PDF] centralisation volet roulant somfy

[PDF] kit centralisation volet roulant filaire

[PDF] centre d'affaire attijariwafa bank

[PDF] attijariwafa bank centre d'affaire fes

[PDF] centre d'affaire attijariwafa bank agadir

[PDF] Machines thermiques Sommaire

Olivier Bonnefoy (bonnefoy@emse.fr)

Machine thermique

ConvertisseurPuissance

thermiquePuissance mécanique↔↔

MACHINES DE TRANSFERT

DE CHALEUR

MOTEURS THERMIQUES

MACHINES THERMIQUES

DE CHALEUR

Q Chaud Q2 Q1 W

Environ-

nement W W Q2 Q1 Q2 Q1 W Q2 Q1 Q' 2 Q'1 Froid

COMBUSTION INTERNECOMBUSTION EXTERNE

MOTEURS THERMIQUES

COMBUSTION INTERNE

COMBUSTION EXTERNE

Chaudière

i.e.

Chaudière

Turbine

Condenseur

Pompe Chambre de combustionTurbineCompresseurAir(kérosène)Air (+ brûlés ) [ ]1;0 2 ?-=Q Wη U S 2Q 21

1QQ--=η

0=ΔU

0=ΔS

21QQWU++=Δ

22
11TQ

TQSéchange+=Δ

créationSQ T T

TΔ--=.111η

créationéchangeSSSΔ+Δ=Δ

ηmax

ηmax

créationQT22

0≥ΔcréationS11

21
max

Très irréversiblePeu irréversible

80
T 80T

20°C

20°C

80°C

80°C

20°C

20°C

60°C

60°C

40°C

40°C

80°C

80°C

2020
chaudfroid arnotCTT-≡1η

η-=W

CarnotT

T

énergétiqueQ

ηηη=énergétique

exergetique

Carnot

La thermodynamique est un sujet curieux. La première fois qu'on l'aborde, on ne le comprend pas du tout. La deuxième fois, on pense qu'on le comprend, sauf l'un ou comprend pas, mais à ce stade on y est tellement habitué qu'on ne s'en préoccupe plus.

Arnold Sommerfeld

Travail :

Entropie :autresautresWdVPWWW+-=+=.pression de forces créationcréationéchangeST

QSSdS+=+=

Conservation de l'énergie en système fermé

Conservation de l'énergie en système ouvert

dt dVP dt W dt Q dt mgzmcUd autres.21 2 Formellement, en système ouvert, le travail des forces de pression n'apparaît pas (explicitement) et H remplace U. ssortiess e entréeseautres gzchmgzchmdtW dtQ dtmgzmcUd++-++++=++222

21.21.21

Nota Bene

y = hsvy = x.yV+ (1-x).yL

LGLMvvvvx-

Courbe de bulleCourbe de rosée

MM LG LM ss ssx LGss- MM

LGLMssssx-

x,y,z dyyzdxxzdz xy yxxyyz xxz y 1..-= z y y x x z ∂∂∂xzyzyx 1.= yyzx xz -=dVPdSTdU.. dTSdvPdFdTSdPVdGdPVdSTdH dVPdSTdU VP HTS HP VUTSU SV

STFPVFS

TGVPG VPTS

VTPTSP

TP PSVS P S T VSV PTSP VT TV TP VS TP PT PPPTh TsTC us∂=∂= VVVT u T sTC

VPCC=γ

sPT PPTTV V

ρβ11

V∂∂-ρ11

TTTPP V V

ρχ11

RT Pv nRT PVZ==

PPPhTZ

CPRT CTv PT ∂∂=..1.

2βμ

PV TVP TM T

PTMTCC

2

RCCVP=-

VP

0>-=LGhhL

( )LGLGLG satvvTL vvss dTdP

LGvv>>

2RT LP dT dP= 2 .RTdTsat

MACHINES DE TRANSFERT

DE CHALEUR

MOTEURS THERMIQUES

MACHINES THERMIQUES

DE CHALEUR

via

Rendement max ~ 95%

Rendement max ~ 38%

Rendement max ~ 38%

FRANCIS PELTON KAPLAN

Trois Gorges, Chine : 18 GW grâce à 26 turbines Francis (

ΔH=90 m)

POMPES VOLUMETRIQUES

POMPES CENTRIFUGES

C'est une centrale électrogène !

oxydation d'un carburant fission de l'uranium 235 oxydation d'un carburant EI Q /R11 Do /R12 Do /R13 Do /R14 Do /R15 Do /R16 Do /R17 Do /R17 Do /R18 Do /R19 Do /R20 Do /R21 Do /R22 Do /R23 Do /R24 Do /R25 Do /R25 Do /R26 Do /R27 Do /R28 Do /R29 Do /R29 Do /R29 Do /R30 Do /R31 Do /R31 Do /R31 Do /R32 Do /R32 Do /R32 Do /R32 Do BT /R9 7.61704 Tf

1 0 0 1 554.528 19.5195 Tm

[(8 1289
via

240 m.

30 m.
(50 t/h de fuel + 500 t/h d'air) BILAN

641 MW thermique

250 MW électrique

Rendement énergétique : 39%

169 MW679 t/h de vapeur189 kg/s

x = titre = fraction massique de vapeur volumique Hirn y 1-y

100289

Données :

P Ch T C 1 234

Calculer :

2 2

Air comprimé

(10 bars, 300°C)Gaz brûlés(10 bars, 1000°C)Q2

Chambre

de combustion

Echappement

Air aspiré

(Patm,Tatm)Gaz détendus(Patm, 600°C) Q 1 mécanique cinétique liée au distincte du

CHAMBRE DECOMBUSTION

rev s diff réelh h h h h h

Makila 3G

Description

vMac= c S Pc RTcM M ()()= + - ≈ - = Δ K m m v m v m v v m v pP K v= ()()= + - ≈ - = Δ air K air air airK m m v m v m v v m v m air K airvvP m m m= + - t KP m h= Δ mPε= m m t P

Pε=

p p m P

Pε=

p tp t P

Pε=

Hypothèses :

Questions

Nota Bene : les propriétés thermodynamiques de l'air nécessaires au calcul se trouvent dans l'annexe du polycopié

MACHINES DE TRANSFERT

DE CHALEUR

MOTEURS THERMIQUES

MACHINES THERMIQUES

DE CHALEUR

via (régénérateur inclus dans le déplaceur)

An experimental study on the development of a -type Stirling engine for low and moderate temperature heat sources

1 23
4 1 1quotesdbs_dbs29.pdfusesText_35