[PDF] [PDF] MECANIQUE DU SOLIDE RIGIDE - UPMC

a) Glisseur Un torseur est un glisseur s'il existe un vecteur lié dont il soit le torseur associé { } u L m cinématique (voir cours sur les torseurs) Ω - tous les  



Previous PDF Next PDF





[PDF] Chapitre 1 :Torseurs

Chapitre 1 : Torseurs Mécanique Un torseur correspond à une classe d' équivalence entre les systèmes de 3) Produit scalaire de deux torseurs )( )( ][][ 1 2



[PDF] Notions sur les torseurs

16 mar 2010 · 3) TRANSPORT D'UN TORSEUR (CHANGEMENT DE POINT DE REDUCTION) La notion de torseur est extrêmement utile dans le cours de 



[PDF] Chap1: OUTILS MATHEMATIQUES VECTEURS & TORSEURS

la compréhension de la suite de ce cours et donner des notions sur les glisseurs Le vecteur R : Appelé résultante du torseur, constituant un champ uniforme



[PDF] Cours de Mécanique du Solide

Plan du cours Deux torseurs sont équivalents s'ils ont même éléments de réduction en tout vecteurs glissants dont le torseur associé soit on dit que cet



[PDF] TORSEUR CINEMATIQUE

On reconnaît la relation fondamentale des moments du torseur cinématique, avec pour résultante le vecteur vitesse angulaire du solide S dans R0 avec : 3



[PDF] MECANIQUE DU SOLIDE RIGIDE - UPMC

a) Glisseur Un torseur est un glisseur s'il existe un vecteur lié dont il soit le torseur associé { } u L m cinématique (voir cours sur les torseurs) Ω - tous les  



[PDF] Torseurs

9 2 Comoment de deux torseurs 9 VI - Torseurs spéciaux 10 1 Torseur nul 10 2 (Torseur) glisseur 10 3 (Torseur) couple 10 VII - Axe central d'un torseur



[PDF] Mécanique des systèmes de solides indéformables - ENSA de

Ce manuel est un cours de base de la mécanique des systèmes de solides indéformables, 2- Puissance d'un torseur de forces appliquées à un solide



[PDF] Torseur dune action mécanique - Gecifnet

Le but de ce cours est de choisir une représentation mathématique des actions mécaniques, d'étudier l'action mécanique de la pesanteur et de définir les efforts  

[PDF] le lion et le rat commentaire composé

[PDF] questions de compréhension le lion et le rat

[PDF] le lion et la souris histoire

[PDF] question de corpus poésie méthode

[PDF] cible des medicaments

[PDF] réécriture de la fable le loup et l'agneau

[PDF] du mécanisme d'action des médicaments ? la thérapeutique

[PDF] agoniste antagoniste medicament

[PDF] mécanisme d'action definition

[PDF] la besace la fontaine morale

[PDF] la besace theme

[PDF] morale l'hirondelle et les petit oiseaux

[PDF] le clivage du moi dans le processus de défense pdf

[PDF] clivage relation amoureuse

[PDF] clivage de l'objet

[PDF] MECANIQUE DU SOLIDE RIGIDE - UPMC 1

MECANIQUE DU SOLIDE RIGIDE

ENSEIGNEMENT DE LICENCE DE MECANIQUE

UNIVERSITE PIERRE ET MARIE CURIE

LA 201 SECTION B

ANNEE 2006-2007

UPMC

A. ALLICHE

2 CHAPITRE I - CALCUL VECTORIEL - RAPPELS DE MATHEMATHIQUES

1 Espace vectoriel et représentation d'un vecteur.

Soit E un espace vectoriel de dimension n = 3, en fait 3 , de base 123
(,,)beee formée de 3 vecteurs linéairement indépendants. Tout vecteur de E peut être représenté par une combinaison linéaire des vecteurs de base de b :

112233

vveveve e ou bien sous la forme 3 1 ii i vv Une autre notation peut être adoptée, appelée aussi convention de l'indice muet ou convention d'Einstein : ii vve

L'indice répété i est l'indice muet sur lequel se fait l'opération. Cette convention n'est

applicable que dans le même monôme.

L'espace vectoriel E est souvent représenté par un repère R possédant une origine O et une

base. On notera : 123
(,,)beee 122
(;,,)ROeee

2 Opérations sur les vecteurs

2 - 1 Produit scalaire

Un produit scalaire est une forme bilinéaire symétrique de ExE sur telle que la forme quadratique associée soit définie positive. Par définition une forme bilinéaire f est une application qui à deux vecteurs de E associe le réel et uv (,)fuv . Par ailleurs f est une application linéaire par rapport à chacun des arguments.

Notation :

(,).fuvuv La symétrie du produit scalaire est définie par la propriété : UPMC

A. ALLICHE

3 (,)..(,)fuvuvvufvu Une forme est dite définie positive si le produit scalaire d'un vecteur par lui-même est positif et ne s'annule que si le vecteur .uu 0u

Remarques :

On définie le produit scalaire de 2 vecteurs et uv dans une base par : 123
(,,)beee 33
11 iijjijijiijj ij uvueveuveeueve Deux vecteurs sont dits orthogonaux si leur produit scalaire est nul : .0uv

Cette dernière propriété nous permet d'écrire que dans le cas d'une base orthonormée nous

avons : 1 si 0 si ijij ij ee ij D'où une autre écriture possible pour le produit scalaire :

112233

iijjii uvueveuvuvuvuv Norme d'un vecteur : Parmi les définitions possibles de la norme on retiendra celle de la norme euclidienne : 1/22 iii i uuuuuu On se sert de cette dernière définition pour introduire une nouvelle notation du produit scalaire impliquant l'angle entre les deux vecteurs : ..cos(,uvuvuv)

2 - 2 Produit mixte

Soit E un espace vectoriel de base

123
(,,)beee . On appelle produit mixte des vecteurs de E, leur déterminant dans la base, et uvw 123
(,,)beee . On le note : UPMC

A. ALLICHE

4 (,,)(,,)uvwDetuvw On démontre que le déterminant est invariant par changement de la base b.

Propriétés :

Le produit mixte est invariant par rotation circulaire des vecteurs. Cette propriété est directement liée à celle des déterminants : (,,)(,,)(,,)uvwwuvvwu Le produit mixte de 3 vecteurs coplanaires est nul : (,,)0,, liésuvwuvw Les autres cas de nullité du produit mixte se vérifient dans le cas où deux des trois vecteurs sont colinéaires, et lorsque un des vecteurs est nul.

2 - 3 Produit vectoriel :

Théorème :

Soient deux vecteurs de E. et uv

l'application ER wuvw est une forme linéaire.

Il existe un unique vecteur

de E tel que : ,()(,,).wEwuvww

Démonstration :

est linéaire puisque le déterminant est linéaire par rapport au dernier argument. unicité de la deuxième proposition :

Supposons qu'il existe deux vecteurs et '

tel que : ,()(,,).'.wEwuvwww alors et donc le vecteur (').0wEw est orthogonal à tout vecteur de E. C'est un vecteur nul '

Existence :

Notons P la matrice constituée des vectrices colonnes de , et uvw UPMC

A. ALLICHE

5 111
222
333
uvw Puvw uvw

Nous aurons

123322133131221

(,,)det()()()uvwPwuvuvwuvuvwuvuv

Si l'on pose pour

233211331212213

()()(uvuveuvuveuvuve)

Nous obtenons alors :

(,,).uvww

Le vecteur

ainsi défini est le produit vectoriel des deux vecteurs ,uv et on note : uv

Retour au produit mixte :

Nous pouvons donc aisément écrire le produit mixte de la manière suivante : (,,).uvwuvw

Les propriétés du déterminant et la symétrie du produit scalaire permettent d'écrire :

(,,).(,,)(,,).uvwuvwvuwvwuuvw

Expression du produit vectoriel :

Le produit vectoriel uv

peut s'écrire de divers manières, en particulier en se servant de l'expression du déterminant précédente, on aura :

223311

12

331122

uvuvuv uveee uvuvuv 3 es

Propriétés du produit vectoriel :

a) L'application de EE dans E est anticommutative, bilinéaire et non associative. b) et uvuuvv c) 0, colinéairuvuv

Formule du double produit vectoriel

UPMC

A. ALLICHE

6 ()(.)(.)uvwuwvuvw (démonstration en TD)

2 - 4 Division vectoriel :

Soient deux vecteurs et vw

connus, existe-t-il un vecteur x tel que : vxw

Remarque :

doit être non nul v doivent être orthogonaux et vw vSi existe, alors x x est aussi solution. Recherchons maintenant le vecteur en fonction de x et vw En multipliant vectoriellement par , on obtient : v ()vvxvw En utilisant la formule du double produit vectoriel, on aboutit à l'expression suivante : 2 1 (.)(.)vxvvvxvwxvvw v On peut démontrer, à ce niveau la deuxième remarque ci-dessus : 2 1( vvw vxvvvw vv 2 en développant ce double produit vectoriel, on obtient : 2 (.)vww vxw v

Cette solution n'est valable que si .0vw

3 - Identité de Lagrange

Théorème :

Soient deux vecteurs de E. et uv

L'identité de Lagrange est définie par la relation suivante : 22
2 (.).uvuvuv 2

Démonstration :

2 ().()(,,)(,,)(().)uvuvuvuvuvvuvuvuvu UPMC

A. ALLICHE

7 En utilisant la formule du double produit vectoriel on obtient : ()(.).(.).vuvvvuvuv

D'où :

222
2 .(.uvuvuv L'identité de Lagrange nous permet d'écrire une autre formulation du produit vectoriel : ().sin(,uvuvuv

Démonstration :

2222222

22
.(.).(1cos(,)).(sin(,uvuvuvuvuvuvuv 2quotesdbs_dbs31.pdfusesText_37