[PDF] [PDF] TD corrigés délectromagnétisme - Unisciel

29 oct 2011 · b) On utilise le théorème d'Ampère : (le champ magnétique est selon l'axe du traiter les problèmes d'induction faisant intervenir le champ 



Previous PDF Next PDF





[PDF] Exercices dinduction avec solution

Electromagnétisme - Exercices Induction 1 Chute d'un cadre dans un champ magnétique Un cadre rectangulaire de résistance R est situé dans un plan 



[PDF] Exercices corrigés : Linduction magnétique - TuniSchool

Le vecteur champ magnétique A B créé par l'aimant droit est représenté sur le schéma b- Loi de Lenz : Le courant induit a un sens tel qu'il s'oppose par ses 



[PDF] 6 exercices corrigés de magnétisme - Fabrice Sincère

version 1 0 page 1/6 EXERCICES DE MAGNETISME ENONCES Exercice 1 : Champ magnétique terrestre Un solénoïde comportant N = 1000 spires jointives  



[PDF] TD corrigés délectromagnétisme - Unisciel

29 oct 2011 · b) On utilise le théorème d'Ampère : (le champ magnétique est selon l'axe du traiter les problèmes d'induction faisant intervenir le champ 



[PDF] Induction magnétique (2) : circuit mobile dans un champ

Sup PCSI1 - Exercices de physique Induction magnétique Lorentz - CORRIGES 1 Induction magnétique (2) : circuit mobile dans un champ magnétique 



[PDF] TD15 : Induction électromagnétique – corrigé - Physique-Chimie

TD15 : Induction électromagnétique – corrigé Exercice 1 : Flux d'un champ magnétique 1 φ = −abB Exercice 5 : Inductance propre d'un solénoïde 1



[PDF] Induction électromagnétique

Correction : Lorsque la barre se déplace dans le champ magnétique, elle est le siège d'un phénomène d'induction de Lorentz Elle se 



[PDF] Travaux dirigés de magnétisme

De même, pour les exercices non traités en TD : aucune correction ne sera distribuée Courant, symétrie et orientation du champ magnétique Hans Christian Ørsted Exercice 1 : Phénomènes d'induction (A faire avant le TD) A l' aide de la 



[PDF] Le champ magnétique - PCSI-PSI AUX ULIS

TD- Induction - I: Champ magnétique Correction Application 1 : Dans les cartes de champs magnétique suivantes, où le champ est-il le Exercice 1 : Bobine



[PDF] Exercices Chapitre II-5 et II-6 Induction_Corrigé - Cours de

Corrigé des Exercices Chapitre II-5 et II-6 "Induction et Auto-induction" ② Dans le phénomène d'induction, la source de champ magnétique se nomme :

[PDF] vecteur champ magnétique

[PDF] champ magnétique aimant en u

[PDF] cours champ magnétique terminale s

[PDF] cours champ magnétique terminale s pdf

[PDF] champ magnétique bobine formule

[PDF] champ magnétique spire

[PDF] champ magnétique bobine plate

[PDF] champ magnétique crée par un solénoide exercice corrigé

[PDF] champ magnétique crée par un solénoide

[PDF] champ magnétique bobine courant alternatif

[PDF] champ magnétique bobine aimant

[PDF] expansion océanique 1s

[PDF] tp expansion océanique 1ère s

[PDF] magnetostatique exercice corrigé

[PDF] champ magnétique crée par un solénoide infini

1

Préparation au Concours Cycle Polytechnicien

Filière universitaire : candidats internationaux (O.Granier, ITC, du 24 au 29 octobre 2011)

TD corrigés d'électromagnétisme

1) Bobines de Helmholtz :

On considère une distribution de courants cylindriques autour de l'axe (Ozà qui crée un

champ magnétique sur l'axe Oz colinéaire à cet axe.

1) Rappeler l'expression du champ créé par une spire de rayon a parcourue par une intensité I

à la distance z du centre de cette spire sur l'axe de la spire.

2) On se place maintenant (tout en étant toujours à la côte z) à une distance r relativement

faible de l'axe. En écrivant la conservation du flux du champ magnétique, montrer que le champ possède une composante radiale donnée par : 2 z rBrB z

2) Champ électrique et champ magnétique :

Soit C un cylindre de révolution d'axe (Oz), de rayon a et de longueur très grande devant a. C,

chargé uniformément avec la densité volumique

ρ, est mis en rotation autour de (Oz) avec la

vitesse angulaire ω (supposée indépendante du temps jusqu'à la dernière question) sans que cette rotation affecte la répartition des charges dans C. a) Déterminer dans tout l'espace le champ électrique Er. b) Déterminer dans tout l'espace le champ magnétique Br. c) Déterminer de même un potentiel vecteur

Ar du champ Br.

d) Que peut-on dire si ω varie dans le temps "pas trop rapidement" ? Quel est dans ce dernier cas l'intérêt du calcul de

Ar fait en (3) ?

2

Solution :

a) On utilise la théorème de Gauss : (le champ électrique est radial)

Pour r > a :

2 2

0012 ( ) ( )2arhE r a h soit E rr

Pour r < a :

2

0012 ( ) ( )2rhE r r h soit E r rρπ π ρε ε= =

On vérifie que le champ électrique est continu à la traversée du cylindre (en r = a).

b) On utilise le théorème d'Ampère : (le champ magnétique est selon l'axe du solénoïde et on

sait qu'il est nul à l'extérieur). On choisit un contour rectangulaire dont un côté parallèle à

l'axe est dans le solénoïde et un autre à l'extérieur. Alors : 2 20

0( ) ' ' ( )2

a rB r r dr a rμ ρωμ ρω= = -∫ (Pour r < a) c) Le potentiel vecteur est défini par B rotA=uuurrr. Le calcul est identique au calcul du potentiel vecteur créé par un solénoïde classique infini.

On considère un solénoïde infini de section circulaire de rayon R, constitué de n spires

jointives par unité de longueur et parcouru par un courant d'intensité I.

Le plan contenant l'axe du solénoïde et le point M étant un plan d'antisymétrie :

θurAMArr)()(=

En prenant comme contour un cercle centré sur l'axe (Oz) et perpendiculaire à cet axe : dSnBdA SC rrlrr..

On obtient : Si r > R :

4 4 4 2 2

00 0012 ( ) ( )2 ( )

2 2 4 4

aa a arA r a r rdrπ μ ρω π πμ ρω πμ ρω= - = - =∫, soit : 4 0( )8 aA rrμ ρω=

Si r < R :

2 2 4

2 22 2 2

00 00112 ( ) ( ' )2 ' ' ( ) 2

2 2 4 4

ra r rrA r a r r dr a r rπ μ ρω π πμ ρω πμ ρω= - = - = -∫

Soit :

2 2

01( ) 2

8A r a r rμ ρω= -

On constate que le potentiel vecteur est continu à la traversée de la surface r = a du solénoïde.

d) Ces calculs restent valables dans l'ARQS et la connaissance du potentiel vecteur permet de

traiter les problèmes d'induction faisant intervenir le champ électromoteur de Neumann,

A t r 3

3) Condensateur alimenté à haute fréquence :

Un condensateur plan, constitué de deux plaques circulaires d'axe (Oz) et de rayon R,

séparées par une distance e faible devant R, est alimenté par un générateur de tension

sinusoïdale de pulsation ω.

a) Pour ce système à symétrie cylindrique, on écrira le champ électrique sous la forme :

zutrEErrωcos)(= Quelle est l'équation différentielle vérifiée par la fonction E(r) ?

Déterminer la solution sous la forme d'une série entière développée en puissances de la

variable sans dimension c rxω=. b) Pour cmRetMHz520==πω, que peut-on dire de la fonction E(r) à l'intérieur du condensateur ?

L'ARQS est -elle convenable ?

c) Que vaut le champ magnétique à l'intérieur du condensateur ? Donnée : en coordonnées cylindriques, le laplacien d'une fonction ),,(zrfθ est : 22
22
2 11 zff r rfrrrf∂∂+∂∂+)

Solution :

a) Le champ électrique vérifie, en l'absence de courants et de charges :

0)()(0122

22

2=+Δ=∂∂-ΔrEcrEsoittE

cEωrrr Avec l'expression précédente du laplacien, il vient :

0122=+)

EcdrdErdrd

Soit :

0122

22=++EcdrdE

r drEdω. On pose c rxω= et on cherche une solution de la forme (E0, valeur du champ sur l'axe (Oz)) : 10 nn n xaExE

Alors :

2 1 22
1 1quotesdbs_dbs7.pdfusesText_5