[PDF] [PDF] 6 exercices corrigés de magnétisme - Fabrice Sincère

version 1 0 page 1/6 EXERCICES DE MAGNETISME ENONCES Exercice 1 : Champ magnétique terrestre Un solénoïde comportant N = 1000 spires jointives  



Previous PDF Next PDF





[PDF] Le champ magnétique - PCSI-PSI AUX ULIS

Application 1 : Dans les cartes de champs magnétique suivantes, où le champ est-il le plus sol Elle est rectiligne et transporte un courant de 100 A dans la direction de l'Est Décrire le champ Exercice 2 : Spectres de champs magnétiques



[PDF] 6 exercices corrigés de magnétisme - Fabrice Sincère

version 1 0 page 1/6 EXERCICES DE MAGNETISME ENONCES Exercice 1 : Champ magnétique terrestre Un solénoïde comportant N = 1000 spires jointives  



[PDF] THEM 1 (CH1,2) - Sigmaths

Une série d'exercices, à deux niveaux de capacités: Chapitre 11 : Mouvement dans un champ magnétique Par conséquent, le sol se retrouve chargé d' électricité positive noïde est proportionnelle au nombre de spires par unité de



[PDF] Tous les exercices - Electromagnétisme PCSI MPSI PTSI

ges uniforme Quelles sont les symétries de cette distribution ? ➤ Corrigé p 6 sition du sol d'une part, qui créé le champ de pesanteur On donne le champ magnétique créé par cette noïde comme une nappe de courants surfaciques



[PDF] Mini Manuel dÉlectromagnétisme Électrostatique Magnétostatique

Électrostatique Magnétostatique Michel Henry Abdelhadi Kassiba Cours + Exos corrigés Points-clés 144 Exercices 145 Solutions 146 5 Champ magnétique créé par des courants 149 uniformément dans le sol sur une profondeur égale a` P ¼ 50 km Quelle est dans b) Cas du sole´noıde infini On conside`re 



[PDF] concours externe de recrutement de professèurs agrégés - IRPHE

ctahlir l'expression du potentiel vecteur et du champ magnétique pour un dipôle magnétique d Comment Le wlt;noide C\I disp entre le plan du sol, celui-ci présente des écarts de température d'un point à un autre, l'air qui surmonte Donner le corrigé succinct mais complet de l'exercice qu'il a proposé 3 Préciser à 



[PDF] Les fluctuations du champ magnétique terrestre - TEL Archives

19 juil 2012 · Le champ magnétique terrestre présente une vaste gamme de variations d' oxyde de fer dans les sols des régions humides, mais peut être Dans cet exercice, la dé- improving the signal to noise ratio in the global and regional datasets doublement corrigée de deux erreurs introduites par des biais 



[PDF] PHYSIQUE - simoeducation

cours et les exercices corrigés Le cours a été conçu selon le Le ux d'un vecteur champ magnétique a travers une surface alors : □ Quand le corps se rapproche du sol (descente) son noïde, les deux axes étant confondus (Fig (b) ) ; la 



[PDF] CAPES de sciences physiques : Tome 1 : Physique Cours et exercices

Électrostatique et magnétostatique, rappels de cours et exercices Relations de passage pour le champ magnétique ∗h1 repère la hauteur de la masse à l' équilibre par rapport au sol dans les mêmes noïde sont vues sous un angle α1

[PDF] champ magnétique crée par un solénoide

[PDF] champ magnétique bobine courant alternatif

[PDF] champ magnétique bobine aimant

[PDF] expansion océanique 1s

[PDF] tp expansion océanique 1ère s

[PDF] magnetostatique exercice corrigé

[PDF] champ magnétique crée par un solénoide infini

[PDF] formule champ magnétique bobine

[PDF] champ magnétique formule pdf

[PDF] induction magnétique exercices corrigés

[PDF] theoreme d'ampere solenoide

[PDF] champ magnétique tore

[PDF] champ magnétique solénoide formule

[PDF] champ magnétique solénoide fini

[PDF] champ magnétique crée par un solénoide tp

IUT de Nancy-Brabois Fabrice Sincère version 1.0 page 1/6

EXERCICES DE MAGNETISME

E

NONCES

Exercice 1

: Champ magnétique terrestre Un solénoïde comportant N = 1000 spires jointives a pour longueur L = 80 cm.

Il est parcouru par un courant d"intensité I.

a) Faire un schéma sur lequel vous représenterez : - le spectre magnétique du solénoïde - les faces Nord et Sud - le vecteur champ magnétique au centre du solénoïde

On suppose le solénoïde suffisamment long pour être assimilable à un solénoïde de longueur

infinie. b) Quelle est l"expression de l"intensité du champ magnétique au centre du solénoïde ?

A.N. Calculer B si I = 20 mA.

L"axe du solénoïde est placé perpendiculairement au plan du méridien magnétique. Au centre

du solénoïde on place une petite boussole mobile autour d"un axe vertical. c) Quelle est l"orientation de la boussole pour I = 0 ? Quand le courant d"intensité I = 20 mA parcourt le solénoïde, la boussole tourne d"un angle a = 57,5°.

En déduire l"intensité B

h de la composante horizontale du champ magnétique terrestre.

Exercice 2

: Champ magnétique crée par une spire

En utilisant la formule de Biot et Savart, déterminer les caractéristiques du champ magnétique

crée au centre d"une bobine plate de N spires, de rayon R et parcourue par un courant I. Application numérique : R = 5 cm, N = 100 et I = 100 mA. Exercice 3 : Champ magnétique crée par un câble

On considère un câble de rayon R, de longueur infinie, parcouru par un courant d"intensité I

uniformément réparti dans la section du conducteur.

A l"aide du théorème d"Ampère, déterminer l"intensité du champ magnétique en un point situé

à la distance r de l"axe du câble.

Tracer la courbe B(r).

Exercice 4 : Champ magnétique crée par un câble coaxial On considère un câble coaxial infini cylindrique de rayons R 1, R2 et R 3. Le courant d"intensité totale I passe dans un sens dans le conducteur intérieur et revient dans l"autre sens par le conducteur extérieur. -I+I R1R2 R3 IUT de Nancy-Brabois Fabrice Sincère version 1.0 page 2/6

Calculer le champ magnétique en tout point.

Tracer la courbe B(r).

Exercice 5 : Principe du moteur à courant continu

A l"instant t = 0, on ferme l"interrupteur.

a) Calculer I

0, le courant circulant dans le circuit à

l"instant t = 0. Déterminer les caractéristiques de la force magnétique s"appliquant sur la barre AB. Sous l"effet de la force magnétique, la barre est mise en mouvement. A l"instant t, elle se déplace à la vitesse v. b) Déterminer les caractéristiques de la fem induite. En déduire le courant I dans le circuit ainsi que le courant induit i. En fin d"accélération, la barre atteint une vitesse limite v max. c) Que vaut alors F ? (en suppose qu"il n"y a pas de frottement).

En déduire I, i et v

max.

A.N. E = 6 V, r = 1 W, B

ext = 1,5 T et L = 20 cm.

Exercice 6

: Inductance d"un solénoïde Déterminer l"expression de l"inductance L d"un solénoïde.

A.N. N = 1000 spires ;

l = 80 cm ; S = 36 cm² Le solénoïde est traversé par un courant de 0,5 A. Quelle est l"énergie emmagasinée par le solénoïde ? E, r KI extB A B L IUT de Nancy-Brabois Fabrice Sincère version 1.0 page 3/6 O dB B r ldI

57,5°

hB solénoïdeB ttanrésulB IBO L

CORRIGES

Exercice 1

a) Le spectre magnétique d"un solénoïde est semblable à celui d"un aimant droit.

On oriente les lignes de champ avec la règle de la main droite (il faut au préalable définir le

sens du courant). On en déduit les faces nord et sud du solénoïde.

Le champ magnétique au centre du solénoïde est tangent à la ligne de champ passant par O et

de sens donné par l"orientation de la ligne de champ.

b) On suppose qu"à l"intérieur du solénoïde le champ est uniforme et qu"à l"extérieur il est

nul. La circulation du champ magnétique le long du contour (C) est : C = BL (voir figure) L"application du théorème d"Ampère donne : C = Nμ 0I

D"où :

IL N 0Bm=

A.N. B = 3,1×10

-5 T c) L"aiguille s"oriente vers le nord magnétique (champ magnétique terrestre). solénoïdehttanrésulBBB+= solénoïdehBB5,57tan=°

A.N. B

h = 2×10-5 T

Exercice 2

Un morceau de bobine de longueur dl apporte la contribution : 30r rd 4

IBdrlrrÙ

pm=

Ce champ élémentaire est dirigé suivant l"axe et son sens dépend du sens du courant (voir

figure). 20 30R
d 4 I R Rd 4 IdBll p m=pm=

Au totale, la longueur de la bobine est N2pR.

B = R2 IN R R2N 4 I0 20m=p p m

A.N. B = 0,126 mT

IBnordsudO

IUT de Nancy-Brabois Fabrice Sincère version 1.0 page 4/6 I >0 M rB r (C)

Exercice 3

Le sens du champ magnétique s"obtient avec la règle de la main droite. - Champ magnétique à l"extérieur du câble (r >R) : Appliquons le théorème d"Ampère avec un contour circulaire (C) centré sur le câble.

La circulation s"écrit : C = B 2

pr

Théorème d"Ampère : C = μ

0 I

D"où :

r2

IμB0

p= - Champ magnétique à l"intérieur du câble (r

£ R) :

Dans la section de rayon r passe le courant :

²R

²rI

S

²rIJ=p=

C= B 2

pr = μ0 J

D"où :

r²R2

IμB0

p=

Exercice 4

Comme pour l"exercice précédent, on utilise le théorème d"Ampère.

Pour r

£ R1 : r²R2IμB

10p= R

1£ r £ R2 : r2

IμB0

p= R

2£ r £ R3 : ?

---p=²R²R²R²r1r2IμB 232
0 r ³ R3 : B = 0, un câble coaxial ne crée pas de champ magnétique à l"extérieur. r RB O IUT de Nancy-Brabois Fabrice Sincère version 1.0 page 5/6

Exercice 5

a)

Loi d"Ohm : I

0 = E/r = 6 A

Loi de Laplace :

BLIF0Ù=

F = I

0LB =1,8 newton

b) fem induite : e = BLv

I = (E-e)/r = (E- BLv)/r

I = I

0 - i d"où : i = e/r = (BLv)/r

c) F = 0 N donc I = 0 et i = I

0 = E/r = 6 A

I = 0 donc E = BLv

max vmax = E/(BL) = 20 m/s

Exercice 6

Flux magnétique à travers le solénoïde :

F = NBS

Dans un solénoïde :

IN 0Blm= r R 1 B O R2R3 r E I 0 E, r KI extB A B LF r E I e IUT de Nancy-Brabois Fabrice Sincère version 1.0 page 6/6

D"où : SI²N

0lm=F

Par définition :

ILF= S²N

0Llm=

A.N. L = 5,65 mH

Energie emmagasinée par le solénoïde :

mJ 7,0²LI2 1W==quotesdbs_dbs22.pdfusesText_28