[PDF] [PDF] Mouvement dans un champ uniforme - Lycée dAdultes

12 2 Mouvement dans un champ électrique uniforme On considère une particule de charge q et de masse m, arrivant au point O avec une vitesse initiale



Previous PDF Next PDF





[PDF] Etude de particule chargée dans un champ uniforme I - Free

Terminale S – Partie B : Comprendre : lois et modèles Chapitre 13 : Etude Mettre en œuvre une démarche expérimentale pour étudier un mouvement I Accélération d'une particule dans un champ électrostatique uniforme 1) Rappel sur le 



[PDF] Mouvement dans un champ uniforme - Lycée dAdultes

12 2 Mouvement dans un champ électrique uniforme On considère une particule de charge q et de masse m, arrivant au point O avec une vitesse initiale



[PDF] Electromagnétisme A Particule chargée dans un champ électrique

Equations horaires du mouvement d'une charge dans un champ magnétique constant Application: guidage des particules en mouvement Oscillateur 



[PDF] Terminale S - Mouvement dans un champ uniforme - Exercices

Mouvement dans un champ uniforme – Exercices Exercice 1 Document 3 : Force électrostatique subie par une particule chargée dans champ électrique ⃗E



[PDF] Mouvements de particules chargées dans des champs électriques

On considère une particule chargée ponctuelle M (+ q) de masse m en mouvement dans un champ électrostatique 0 E о uniforme et indépendant du temps



[PDF] Chapitre 6 :M ouvement dune particule chargée dans un champ

Dans un référentiel galiléen, une particule de charge q et de vitesse v C déplacement rectiligne uniforme, donc un mouvement hélicoïdal de pas constant Ainsi, le champ magnétique ne peut non seulement pas mettre en mouvement la



[PDF] Mouvement dune particule chargée

On étudie le mouvement d'une particule chargée, émise sans vitesse initiale du point O, sous l'effet d'un champ électrique uniforme et stationnaire par 



[PDF] Déflexion magnétique - Lycée Hoche

Mouvement d'une particule chargée dans un Champ électrique uniforme et permanent le champ est nul et les particules conservent une vitesse constante



[PDF] Mouvement des particules chargées dans un champ

16 mar 2018 · Le mouvement dans un champ électrique uniforme stationnaire sans Une particule de masse m et charge q pénètre avec une vitesse #”v0 = 

[PDF] interprétation champ visuel

[PDF] champ visuel statique

[PDF] champ visuel humphrey 24-2

[PDF] champ visuel de humphrey

[PDF] champ visuel octopus interprétation

[PDF] perte champ visuel

[PDF] champ visuel goldmann prix

[PDF] champ visuel automatisé humphrey

[PDF] analyse du champ visuel

[PDF] champ visuel thg limite

[PDF] champ visuel octopus prix

[PDF] champ visuel normal

[PDF] hyphe champignon

[PDF] cycle de reproduction sexuée des champignons

[PDF] cycle de reproduction des ascomycètes

[PDF] Mouvement dans un champ uniforme - Lycée dAdultes

Chapitre 12

Mouvement dans un champ uniforme12.1 Mouvement dans un champ de pesanteur uniforme . . . . . . . . . . . . .46

12.1.1 Mise en équation du problème . . . . . . . . . . . . . . . . . . . . . . . . . . .

46

12.1.2 Équations horaires de la vitesse . . . . . . . . . . . . . . . . . . . . . . . . . . .

47

12.1.3 Équations horaires de la position . . . . . . . . . . . . . . . . . . . . . . . . . .

47

12.1.4 Équation de la trajectoire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

48

12.1.5 Calcul de la flèche et de la portée . . . . . . . . . . . . . . . . . . . . . . . . . .

48

12.2 Mouvement dans un champ électrique uniforme . . . . . . . . . . . . . . .

49

12.2.1 Condensateur plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

12.2.2 Mise en équation du problème . . . . . . . . . . . . . . . . . . . . . . . . . . .

49

12.2.3 Équations horaires de la vitesse . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

12.2.4 Équations horaires de la position . . . . . . . . . . . . . . . . . . . . . . . . . .

50

12.3 Aspects énergétiques (Rappels de première) . . . . . . . . . . . . . . . . .

50

12.3.1 Énergie cinétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

12.3.2 Énergies potentielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

12.3.3 Énergie mécanique et théorème de l"énergie mécanique . . . . . . . . . . . . . .

51

46Chapitre 12.Mouvement dans un champ uniformeU

neapplication assez classique de la seconde loi de Newton est l"étude des mouvements dans un

champ de pesanteur uniforme ou un champ électrique uniforme. C"est-à-dire une situation où le

système n"est soumis qu"à une seule force constante : son poids ou une force électrique constante.

Ce chapitre permet de détailler la méthode de mise en équation et de résolution du problème, et

s"articule autour du plan suivant :

•Mouvement dans un champ de pesanteur uniforme

•Mouvement dans un champ électrique uniforme •Aspects énergétiques (Rappels de première) (Vidéo)

12.1 Mouvement dans un champ de pesanteur uniforme

12.1.1 Mise en équation du problème

On s"intéresse à un système ponctuel de massem, soumis uniquement à son poids dans un référentiel

terrestre. Le champ de pesanteurg?est supposé constant, dirigé verticalement vers le bas.

Le mouvement dans une telle situation est appeléchute libre(Résumé vidéoici ).Figure 12.1- Schéma d"une chute libre en deux dimensionsMouvement dans un champ de pesanteur uniforme

•Système :{objet de massem}

•Référentiel : Terrestre supposé galiléen, repère orthonormé(O,x,y) •Bilan des forces extérieures : Poids-→P=m-→g=?0 -mg? D"après la seconde loi de Newton, pour un objet de masse constante : m -→a(t) =-→P??m-→a(t) =m-→g a(t) =-→g???ax(t) = 0 a y(t) =-gPoisson Florian Spécialité Physique-Chimie Terminale

12.1.Mouvement dans un champ de pesanteur uniforme4712.1.2 Équations horaires de la vitesse

La première étape de la résolution consiste à faire une primitive deax(t)etay(t)pour trouver les

composantes du vecteur vitessevx(t)etvy(t). Il faut ensuite utiliser les conditions initiales sur le

vecteur vitesse pour déterminer les constantes d"intégration. Dans le cas présent, ces conditions initiales

sont les suivantes : -→v0=?v 0x v 0y? =?v

0cosα

v

0sinα?Équations horaires de la vitesse

a(t) =d-→v(t)dt donc par primitive : ?ax(t) = 0 a y(t) =-g???vx(t) =A v y(t) =-gt+BA,B?R Or : ?vx(0) =v0cosα v y(0) =v0sinα???A=v0cosα

B=v0sinα

D"où les équations horaires de la vitesse :

v(t)?vx(t) =v0cosα v y(t) =-gt+v0sinα12.1.3 Équations horaires de la position de même on primitive la vitesse pour trouver la position, avec pour conditions initiales :

OM(0) =?0

h?Équations horaires de la position v(t) =d--→OM(t)dt donc par primitive : ?vx(t) =v0cosα v y(t) =-gt+v0sinα??? ?x(t) =v0cosαt+C y(t) =-12 gt2+v0sinαt+DC,D?R Or : ?x(0) = 0 y(0) =h???C= 0 D=h D"où les équations horaires de la position :

OM(t)?

?x(t) =v0cosαt y(t) =-12 gt2+v0sinαt+hSpécialité Physique-Chimie Terminale Poisson Florian

48Chapitre 12.Mouvement dans un champ uniforme12.1.4 Équation de la trajectoire

Équation de la trajectoire

Pour obtenir l"équation de la trajectoirey(x), on utilise les équations horaires de la position.

x(t) =v0cosαt??t=xv

0cosα

D"où en injectant dans l"équation dey(t):

y(x) =-12 g?xv

0cosα?

2 +v0sinα?xv

0cosα?

+h

Soit en simplifiant l"écriture :

y(x) =-g2v20cos2αx2+ tanαx+hIl s"agit d"une fonction polynôme du second degré, représentée graphiquement par une parabole comme

le montre la figure

12.2 Figure 12.2- Schéma d"une chute libre en deux dimensions, avec la trajectoirey(x)représentée.

12.1.5 Calcul de la flèche et de la portéeFlèche et portée

LaportéexPest la distance parcourue horizontalement par le système jusqu"au pointPoù il atteint le sol. x pest solution de l"équation du second degréy(x) = 0. Laflècheest le pointScorrespondant au point le plus haut atteint par le système au cours de son mouvement. En ce pointS, le vecteur vitesse est horizontal.

On peut résoudre l"équationvy(t) = 0pour trouver l"instanttSoù le système passe enS, puis

injecter la valeur detSdans les équations horaires du mouvement pour trouverxSetyS.Poisson Florian Spécialité Physique-Chimie Terminale

12.2.Mouvement dans un champ électrique uniforme4912.2 Mouvement dans un champ électrique uniforme

12.2.1 Condensateur plan

Un condensateur plan est composé de deux plaques planes parallèles, de longueurLet séparées d"une

distanced. L"une est chargée positivement et l"autre négativement. Le champ électrique-→Egénéré

entre les deux plaques est orienté de la plaque positive vers la négative (cf. figure 12.3

).Figure 12.3- Champ électrique entre les armatures d"un condensateur plan.Champ électrique d"un condensateur

Soit un condensateur composé de deux plaques planes distantes ded, alimenté par une tension

constanteU(en V) à ses bornes. Le champ électrique-→Ecréé entre les deux armatures du

condensateur estconstant, avec une normeE(enV.m-1) : E=Ud

12.2.2 Mise en équation du problème

On considère une particule de chargeqet de massem, arrivant au pointOavec une vitesse initiale-→v0

horizontale et évoluant entre les deux plaques d"un condensateur plan où règne un champ électrique-→Econstant (cf.12.3 ). Le système{particule}n"est soumis qu"à la force électrique-→F=q-→E(le poids

et les frottements étant supposés négligeables). Résumé vidéo ici .Mouvement dans un champ électrique uniforme

•Système :{particule}

•Référentiel : Terrestre supposé galiléen, repère orthonormé(O,x,y) •Bilan des forces extérieures : Force électrique-→F=q-→E=?0 -E? D"après la seconde loi de Newton, pour un objet de masse constante : m -→a(t) =-→F??m-→a(t) =q-→E a(t) =qm -→E??? ?a x(t) = 0 a y(t) =-qEm Spécialité Physique-Chimie Terminale Poisson Florian

50Chapitre 12.Mouvement dans un champ uniformeRemarque:En fonction du signe de la chargeq, la force électriqueFsera dirigée vers le haut ou

vers le bas. Une charge négative aura une trajectoire déviée vers la borne positive (vers le haut) et

une positive vers la borne négative (vers le bas).

12.2.3 Équations horaires de la vitesse

Le vecteur vitesse initiale horizontal a pour coordonnées : v0=?v 0x v 0y? =?v 0 0? En procédant comme pour le cas du champ de pesanteur uniforme, on peut calculer les primitives et

utiliser les conditions initiales pour déterminer les équations horaires de la vitesse.Équations horaires de la vitesse

v(t)? ?v x(t) =A v y(t) =-qEm t+B??-→v(t)? ?v x(t) =v0 v y(t) =-qEm tavec?A B? =?v 0

0?12.2.4 Équations horaires de la position

De même par primitive de la vitesse, on obtient le vecteur position --→OM(t)avec pour conditions initiales une particule à l"origineO: --→OM(0) =?0

0?Équations horaires de la position

OM(t)?

?x(t) =v0t+C y(t) =-qE2mt2+D??-→v(t)? ?x(t) =v0t y(t) =-qE2mt2avec?C D? =?0

0?12.3 Aspects énergétiques (Rappels de première)

12.3.1 Énergie cinétiqueÉnergie cinétique

E c=12 mv212.3.2 Énergies potentielles

Énergie potentielle de pesanteur

L"énergie potentielle de pesanteurEppdans un champ de pesanteur uniforme de normeg

(enm.s-2), pour un système de massem(en kg), situé à l"altitudez(en m), est donnée par la

relation suivante : E pp=mgzPoisson Florian Spécialité Physique-Chimie Terminale

12.3.Aspects énergétiques (Rappels de première)51Énergie potentielle électrique

La variation d"énergie potentielle électriqueΔEpeentre un pointAet un pointBest égale à

l"opposé du travail de la force électrique-→F:

ΔEpe=-WAB?-→F?

=-q-→E·--→AB12.3.3 Énergie mécanique et théorème de l"énergie mécanique

Énergie mécanique

E m=Ec+EpThéorème de l"énergie mécanique

ΔEm= ΔEc+ ΔEp=?W?-→FNC?

Si un système est conservatif (donc soumis à aucune force non conservative), alors la variation

d"énergie mécanique est nulle et l"énergie mécanique est constante au cours du mouvement.Spécialité Physique-Chimie Terminale Poisson Florian

quotesdbs_dbs29.pdfusesText_35