[PDF] [PDF] électrostatique - Hugues SILA

Exercices corrigés : Electromagnétisme-Electrostatique-Electricité- Electronique 2 En présence du champ magnétique, ces électrons sont soumis à une force 



Previous PDF Next PDF





[PDF] EXERCICES DELECTROSTATIQUE ENONCES - Fabrice Sincère

En dehors des deux plaques, le champ est nul car les champs crées par chaque plaque se compensent exactement Exercice 3 a) C'est la force électrostatique 



[PDF] Cours et exercices corrigés

Cours et exercices corrigés M AKBI Champ électrostatique créé par une distribution continue de charges 4 7 5 Travail de la force électrostatique 105 2



[PDF] Exercices sur les champs - Lycée Maurice Ravel

Ce condensateur crée un champ électrostatique Calculer la valeur de la force que subirait un électron situé au point B Vers quelle armature serait-il dévié ? Données : Constante Corrigé de l'exercice 1 : Champ dans un condensateur 1



[PDF] Electricité Cours Exercices et problèmes corrigés Pr : M CHAFIK EL

I- FORCE ET CHAMP ELECTROSTATIQUES 14 I 1 INTRODUCTION 14 I 2 LA LOI DE COULOMB 14 I 3 CHAMP ELECTRIQUE DANS LE VIDE 16 I 3 1



[PDF] EXERCICES DELECTROSTATIQUE ENONCES

En dehors des deux plaques, le champ est nul car les champs crées par chaque plaque se compensent exactement Exercice 3 a) C'est la force électrostatique 



[PDF] electrostatique-exo-corrig-c3-a9s-fr

Corrigés des exercices 1 1 à 1 25 : avec F la force électrostatique de répulsion 3/ Pour calculer la tension, on doit calculer d'abord le champ électrique au 



[PDF] électrostatique - Hugues SILA

Exercices corrigés : Electromagnétisme-Electrostatique-Electricité- Electronique 2 En présence du champ magnétique, ces électrons sont soumis à une force 



[PDF] EXERCICES - Physicus

Exercice Énoncé D'après Belin 2019 La Lune de masse ML est située à Exprimer les forces électrostatiques champ de gravitation puis calculer la force



[PDF] Exercice 1 : Champ électrostatique créé par des - CNAM main page

Exercice 1 : Champ électrostatique créé par des charges Trois charges ponctuelles +q, -q et -q sont placées aux sommets d'un triangle équilatéral de côté a



[PDF] Force et champ electrostatiques - E-monsite

Commenter les ordres de grandeurs des charges électriques ✓ Exercice 2: La boule d' un pendule électrostatique a une m = 3 g et porte une charge q = 1 u C

[PDF] champs et forces première s

[PDF] exercices champs physique 1ere s

[PDF] exercice champ magnétique corrigé

[PDF] 1ère s champs et forces

[PDF] exercices corrigés champs et forces 1ere s pdf

[PDF] le champ sémantique exercices pdf

[PDF] attijariwafa bank maroc tarifs

[PDF] formulaire ordre de virement attijariwafa bank maroc

[PDF] tarification attijariwafa bank 2017

[PDF] carte aisance attijariwafa bank

[PDF] attijariwafa bank france tarif

[PDF] cash express automatic attijari

[PDF] les cartes bancaires d'attijariwafa bank

[PDF] virement bancaire attijariwafa bank

[PDF] l environnement au maroc pdf

[PDF] électrostatique - Hugues SILA

PREFACE

Cet ouvrage d"exercices corrigés d"ElectromagnétismeElectromagnétismeElectromagnétismeElectromagnétisme----ElectrostatiqueElectrostatiqueElectrostatiqueElectrostatique----

ElectricitéElectricitéElectricitéElectricité---- Electronique Electronique Electronique Electronique est pratiquement destiné aux élèves des classes

préparatoires et aux étudiants de deuxieme année de Mathématiques, physique et chimie .Il propose des problèmes originaux ou classiques, souvent extraits des sujets de concours.

Chaque exercice comprend :

Des énoncés intégrant chacun un titre permettant des se faire une idée sur le sujet traité avec parfois une référence à une épreuve de concours .Les questions sont échelonnées et progressives pour aider l"étudiant dans sa recherche. Des corrigés détaillés de tous les execices permettront aux étudiants de bien maitriser la notion traitée. Je n"insisterai jamais sur le bon mode d"emploi de ce livre d"exercices corrigés.Il serait parfaitement vain de se contenter de lire, même très attentivement, la solution à la suite de l"enoncé.On apprend pas à faire du velo dans un manuel ! Ce n"est qu"après avoir cherché longuement chaque question avec ou sans succès, mais du moins avec persévérance que la lecture du corrigé pourra devenir fructueux et profitable. Avec ce livre, j"espère mettre à la disposition des étudiants un ensemble de d"exercices et de problèmes leur permettant d"acquérir des méthodes et des pratiques qu"ils pourront reinvestir en d"autres circonstances .Je leur souhaite de reussir les concours et examens qu"ils préparent avec courage

Un élève qui ne réussit pas a appris à ne pas apprendre, c"est -à- dire à ne pas changer .Il a donc appris.il a

appris quelque chose de très difficile : à resister à l"aptitude innée de s"adapter. Hélène Trorné-Fabre, japprends, donc je suis

DU MEME AUTEUR

DU MEME AUTEURDU MEME AUTEURDU MEME AUTEUR

· Exercices corrigExercices corrigExercices corrigExercices corrigéééés de mathematiques financieress de mathematiques financieress de mathematiques financieress de mathematiques financieres bts banquebts banquebts banquebts banque

· Comment reussir a ses examens et concoursComment reussir a ses examens et concoursComment reussir a ses examens et concoursComment reussir a ses examens et concours ????

· Exerces corrigExerces corrigExerces corrigExerces corrigéééés de probabilite classe de terminales de probabilite classe de terminales de probabilite classe de terminales de probabilite classe de terminale

· Epreuves corrigEpreuves corrigEpreuves corrigEpreuves corrigéééés concours d"entree a l"ecole nationale superieure s concours d"entree a l"ecole nationale superieure s concours d"entree a l"ecole nationale superieure s concours d"entree a l"ecole nationale superieure

polytechnique yaounde polytechnique yaoundepolytechnique yaoundepolytechnique yaounde

· Exercices cExercices cExercices cExercices corrigorrigorrigorrigéééés s s s de mde mde mde méééécaniquecaniquecaniquecanique premier cyclepremier cyclepremier cyclepremier cycle---- lllliiiicencecencecencecence

· Exercices corigExercices corigExercices corigExercices corigéééés d"optique s d"optique s d"optique s d"optique

· Exercices corrigExercices corrigExercices corrigExercices corrigéééés de thermodys de thermodys de thermodys de thermodynamique namique namique namique premier cyclepremier cyclepremier cyclepremier cycle---- lllliiiicencecencecencecence

EXERCICE1 : champ électromagnétique dans le vide.

Les équations de Maxwell dans le vide

On donne les équations de Maxwell que doivent vérifier respectivement le vecteur champ électrique

E et le vecteur champ magnétique B en notant r la densité volumique de charge et j le vecteur densité de courant. (e

0 et μ0 étant respectivement la permittivité et la perméabilité du vide : μ0 e0 c2 = 1)

Les vecteurs sont écrits en gras et en bleu.

On repère tout point M de l"espace à l"aide d"un repère ( O, ex, ey, ez)

Montrer qu"une onde plane rectiligne

E= E0 cos(wwwwt-kx)ey peut se propager dans le vide ; E0 est l"amplitude constante.

Elle doit vérifier l"équation de propagation, obtenue à partir des équations de Maxwell :

d

2Ey/dy2 = d2Ey/dz2 = 0 ; dEy/dx = kE0 sin(wt-kx) ; d2Ey/dx2 = -k2E0 cos(wt-kx) = - k2Ey.

dE y/dt = -wE0 sin(wt-kx) ; d2Ey/dt2 =-w2E0 cos(wt-kx) = -w2Ey. par suite : - k

2Ey- (-w2/ c2E y) 0 ; relation vérifiée si k = wwww/c.

Quelle est la direction de propagation ?

Direction de propagation : l"axe x"x

Quelle est la Valeur de la norme du vecteur d"onde k ?

Valeur de la norme du vecteur d"onde

k : k = w/c Donner l"Expression du champ magnétique associé :

Expression du champ magnétique associé

B=E0 / c cos(wt-kx)ez ; B, E, ex forment un trièdre direct ( figure ci-dessous)

On définit le vecteur de Pyonting

par P= 1/m0[E^ B] Donner le sens et la vitesse de propagation de l"énergie ,le flus du vecteur de poynting et son

P = E^B / m0 avec B = u^ E /c et E = cB^ u

d"où : P = cB²/ m0 u = ce0 E² u = ce0E20 cos2(wt-kx)u L"énergie se propage dans le sens de l"onde à la vitesse c.

Le flux du vecteur de Poynting à travers une surface S est égale à l"énergie contenue dans un cylindre

de section S et de longueur c ( énergie transmise à travers une surface par unité de temps)

F = PS=ce

0 E²S

Son unité est W m

-2.

Quelle est la Valeur moyenne de

sur une période en fonction de E0, eeee0 et c vitesse de la lumière dans le vide.

Valeur moyenne de

sur une période en fonction de E0, e0 et c, vitesse de la lumière dans le vide.

Un faisceau lase polarisé rectilignement est assimilable à une onde plane de section 1 mm². Pour une

puissance transportée P

0 = 100 mW,

calcul de l"amplitude du champ électrique correspondant : P

0 = ½e0cE02S ; E02 =2P0 / ( e0cS) avec e0 =1/(m0c2)

E

02 =2P0 m0c / S avec P0 =0,1 W ; m0= 4 p 10-7 ; c = 3,00 108 m/s ; S= 10-6 m².

E

02 =2*0,1*4 p 10-7 *3,00 108 / 10-6 =7,54 107 ; E0 =8,7 103 V/m.

On définit une onde

E= E0 cos(wwwwt-kx)ey + E0 sin(wwwwt-kx)ez.

Cette onde est dite "circulaire ": l"amplitude E

0 est constante ; le vecteur E tourne à vitesse constante w

autour de l"axe Ox.

Donner le champ

B et vecteur de Poynting P associé :

B = ex ^ E /c

B =E0 /c [cos(wt-kx)ex ^ey+ sin(wt-kx)ex ^ez ]

B =E0 /c [cos(wt-kx)ez + sin(wt-kx)(-ey) ]

P = E^B / m0

P =E20 / (cm0)[ cos(wt-kx)ey + sin(wt-kx)ez]^[cos(wt-kx)ez + sin(wt-kx)(-ey)] P =E20 / (cm0)[cos2(wt-kx)ex+sin2(wt-kx)ex] =E20 / (cm0)ex =e0cE02ex

Le vecteur de Poynting

P est constant : il ne dépend ni de x, ni du temps. Exercice 2 : champ électromagnétique rayonné par un dipôle oscillant.

Les vecteurs sont écrits en gras et en bleu.

Pour r=OM >> l=2pc/w, le champ magnétique rayonné en M par un dipôle oscillant, de moment dipolaire p(t) = p0 cos (wt) ez, placé en un point O est tel que : E q= -w2 sinq/( 4pe0rc2) p0 cos(w(t-r/c)) ; Bj= Eq /c.

Les autres composantes sont négligeables.

L"onde est elle plane ?

Le dipôle ( deux charges +q et - q situées à la distance d ) est équivalent à un élément de courant

ldq/dt ez = dp/dt ez. Tout plan contenant l"axe Oz est plan de symétrie. Le champ électrique est dans le plan défini par Oz et eqqqq.

Le champ magnétique créé

Bjjjj est perpendiculaire au plan contenant le champ électrique.

Les amplitudes E

q et Bj dépendent de r et de q : en conséquence l"onde n"est pas plane.

L"onde est elle quasi-plane ?

Le rapport des amplitudes E

q / Bj= c est constant et de plus les champs Bjjjj et Eqqqq sont perpendiculaires et transversaux : l"onde est dite " quasi-plane".

Définir le vecteur de Pyonting

P = E^B / m0 avec E = -w2 sinq/( 4pe0rc2) p0 cos(w(t-r/c)) eqqqq =Eqeqqqq B = Eq /c ejjjj. P =Eq eqqqq ^Eq /(cm0) ejjjj = E2q/(cm0)eqqqq ^ejjjj =E2q/(cm0)er . P =[w2 sinq/( 4pe0rc2) p0 cos(w(t-r/c))]2 /(cm0) er avec 1/(cm0) = e0c

P = w4 sin2q/( 16p2e0r2c3) p20 cos2(w(t-r/c))er .

Calculer la Valeur moyenne de

sur une période : Calculer L"énergie moyenne rayonnée par unité de temps à travers la sphère de tayon r expression de la surface élémentaire en coordonnées sphériques : dS= r

2 sinq djdq.

L"énergie moyenne rayonnée par unité de temps à travers la sphère de tayon r, c"est à dire le flux de

P à travers la surface de la sphère de rayon r vaut :

Primitive de

sin3q : sin

3q = sinq* sin2q = sinq*(1-cos2q ) = sinq-sinqcos2q.

primitive de sin q : -cos q dont la valeur entre 0 et p est : 2. primitive de -sinq cos2q : u = cosq ; u "= - sinq ; -sinq cos2q = u2u" d"où la primitive : 1/3u3 = 1/3cos3q. la valeur de 1/3cos

3q entre 0 et p est : -2/3

Exercice 3

: rayonnement de l"électron dans le modèle de

Thomson

Les vecteurs sont écrits en gras et en bleu.

L"atome d"hydrogène est considéré comme un double dipôle oscillant appliqué en O : p x=p0cos(wt) ; p y=p0sin(wt). Il rayonne un champ électromagnétique. Donner l"expression du champ magnétique rayonné en M par un dipôle oscillant, de moment dipolaire py(t) = p0 sin (wwwwt) ey, placé en un point O. Donner l"expression du champ magnétique rayonné en M par un dipôle oscillant, de moment dipolaire py(t) = p0 sin (wwwwt) ey, placé en un point O.

Conclure

Shématisons les composantes du champ E associé aux deux dipôles en un point M du plan (Oxy). M

repéré par les coordonnées polaires r et a. Pour r=OM >> l=2pc/w, le champ magnétique rayonné en M par un dipôle oscillant, de moment dipolaire px(t) = p0 cos (wt) ex, placé en un point O est tel que :

Ex= -w2 sina/( 4pe0rc2) p0 cos(w(t-r/c))eaaaa.

Le champ magnétique rayonné en M par un dipôle oscillant, de moment dipolaire py(t) = p0 sin (wt) ey, placé en un point O est tel que : Ey= -w2 cosa/( 4pe0rc2) p0 sin(w(t-r/c))(-eaaaa) = w2 cosa/( 4pe0rc2) p0 sin(w(t-r/c))eaaaa. par suite : E=[ -w2 sina/( 4pe0rc2) p0 cos(w(t-r/c)) + w2 cosa/( 4pe0rc2) p0 sin(w(t-r/c))]eaaaa. E=w2p0 /( 4pe0rc2) [ - sina cos(w(t-r/c)) +cosa sin(w(t-r/c))]eaaaa. finalement

E=w2p0 /( 4pe0rc2) sin[w(t-r/c)-a]eaaaa.

Exercice 4 : courant alternatif sinusoïdal

a.Rappel de cours

U volt valeur efficace

w rads-1 pulsation w=2pf f hertz fréquence, inverse de la période

T s période

Yrad phase

On représente une grandeur sinusoïdale par

· un vecteur de norme U formant l"angle

Y avec l"axe horizontal .

· un nombre complexe de module U, d"argument Y. (j²=-1) fonction sinusoidale dérivée primitive fonction sinusoidale de même pulsation en avance de p/2 , de valeur efficace

Uw en

retard de p/2 , de valeur efficace U /w jwU notation complexe U /jw p

U notation de Laplace U / p

impédances Z ohm ; admitance Y=1/Z vecteur notation complexe notation de Laplace résistance R R condensateur

1/(jCw) 1/ (pC)

bobine inductive r+jLw r+pL On applique aux grandeurs complexes les lois du courant continu. Danger !!!!! ces mêmes lois ne s"appliquent pas ni aux grandeurs efficaces , ni aux grandeurs instantanées b. Exercices

1-exercice 1 :exemple de calcul d"une impédance complexe

Dans le cas ou LCw²=1, calculer :

· l"impédance complexe

· l"impédance réelle

· la phase de U par rapport à celle de I prise comme origine corrigé remplacer jw par p contrôler constamment l"homogénéité des calculs , en se souvenant que LCp² est sans dimension , et que L/C est le carré d"une impédance. impédance complexe branche R, C

Z1=R+1/(pC)

branche R, L Z2= R+pL association en dérivation Z1Z2 / (Z1+Z2) (R+1/(pC))(R+pL)/(2R+pL+1/(pC)) (R²+L/C+R(Lp+1/(pC)) / (2R+pL+1/(pC)) or(Lp+1/(pC) =0 dans cet exercice

Z= (R²+L/C)/ (2R) grandeur réelle ,

donc tension aux bornes du dipole et intensité principale en phase

2-exercice 2 : exercice précédent : calculs des intensités

R=50 W; L=0,1 H; C=10mF. U

AB=10V

1. calculer la pulsation dans le cas où LCw²=1

2. déterminer les intensités dans chaque branche, l"intensité principale.

corrigé L w=100 W 1/(Cw)=100Wquotesdbs_dbs29.pdfusesText_35