[PDF] [PDF] 13 Fourier Transform

An ”integral transform” is a transformation that produces from given functions new func- tions that Inverse Fourier cosine transform of ˆfc(ω): f(x) = √ 2 π ∫ ∞



Previous PDF Next PDF





[PDF] Table of Fourier Transform Pairs

Function, f(t) Fourier Transform, F(w) Definition of Inverse Fourier Transform Р cos( t t p t rect t A 2 2 )2( ) cos( w t p wt t p - A ) cos( 0t w [ ]) () ( 0 0 wwd



[PDF] Fourier Transform - Rutgers CS - Rutgers University

How to decompose a signal into sine and cosine function Also known as harmonic functions ▫ Fourier Transform, Discrete Fourier Transform, Discrete Cosine 



[PDF] Discrete Fourier Transform Inverse Fourier transform

12 avr 2018 · The point of the Fourier transform is to be able to write a function as a sum of sinuosoids Since sine and cosine functions are defined over all 



[PDF] Fourier Transforms of Common Functions - CS-UNM

The inverse Fourier transform transforms a func- tion of frequency, F(s), into a function of time, f(t): F −1 Fourier Transform of Sine and Cosine (contd )



[PDF] The Fourier Transform: Examples, Properties, Common Pairs

Example: Fourier Transform of a Cosine f(t) = cos(2πst) Odd and Even Functions Even Odd Let F−1 denote the Inverse Fourier Transform: f = F−1(F )



[PDF] Addl Table of Fourier Transform Pairs/Properties

Signals Systems - Reference Tables 1 Table of Fourier Transform Pairs Function, f(t) Fourier Transform, F(w) Definition of Inverse Fourier Transform ò ¥ ¥-



[PDF] Chapter 3 - Sine and Cosine Transforms - WordPresscom

Transforms with cosine and sine functions as the transform kernels represent an used here provides for a definition for the inverse Fourier cosine transform,



[PDF] Chapter 1 The Fourier Transform - Math User Home Pages

1 mar 2010 · cos(λt)dt = 2 sin(πλ) λ = 2π sinc λ Thus sinc λ is the Fourier transform of the box function The inverse Fourier transform is ∫ ∞ − 



[PDF] 13 Fourier Transform

An ”integral transform” is a transformation that produces from given functions new func- tions that Inverse Fourier cosine transform of ˆfc(ω): f(x) = √ 2 π ∫ ∞



[PDF] Chapter 4 Fourier Transform

is di erentiable everywhere, however, g0(x)=2xsin(1/x)¡cos(1/x) and thus g0(0+) The Fourier transform is usually de ned for admissible functions, and for this The following de nition gives an inverse relation to the Fourier transform

[PDF] inverse fourier transform of e^jwt

[PDF] inverse fourier transform of rectangular function

[PDF] inverse fourier transform of step function

[PDF] inverse z transform calculator

[PDF] inverse z transform of 1

[PDF] investigation 2 i check mixtures and solutions answers

[PDF] investment protection agreement

[PDF] investors expedia group

[PDF] inwi *5

[PDF] inwi data recharge

[PDF] inwi promotion

[PDF] inwi recharge *6

[PDF] ioc host city contract

[PDF] iodoform test

[PDF] ios app development project plan

SEOUL NATIONAL UNIVERSITY

School of Mechanical & Aerospace Engineering

400.002

Eng Math II

13 Fourier Transform

13.1 Fourier Cosine and Sine Transforms

- An "integral transform" is a transformation that produces from given functions new func- tions that depend on a di®erent variable and appear in the form of an integral. !Laplace transform, Fourier transform

Fourier Cosine Transforms

- For an even functionf(x), (a)f(x) =Z 1 0

A(!)cos!xd!where (b)A(!) =2

Z 1 0 f(v)cos!vdv(1) - We now setA(!) =p

2=¼¢^fc(!).

- Fourier cosine transform off(x): fc(!) =r 2 Z 1 0 f(x)cos!xdx(2) - Inverse Fourier cosine transform of ^fc(!): f(x) =r 2 Z 1

0^fc(!)cos!xd!(3)

- Fourier cosine transform : the process of obtaining the transform ^fc(!) from a givenf

Fourier Sine Transforms

- For an odd functionf(x), (a)f(x) =Z 1 0

B(!)sin!xd!where (b)B(!) =2

Z 1 0 f(v)sin!vdv(4) - We now setB(!) =p

2=¼¢^fs(!).

- Fourier sine transform off(x): fs(!) =r 2 Z 1 0 f(x)sin!xdx(5) - Inverse Fourier sine transform of ^fs(!): f(x) =r 2 Z 1

0^fs(!)sin!xd!(6)

1

Example 1.

Fourier cosine and Fourier sine transforms

f(x) =½kif 0< x < a

0 ifx > a:

fc(!) =r 2 kZ a 0 cos!xdx=r 2 kµsina! fs(!) =r 2 kZ a 0 sin!xdx=r 2 ¡k cos!xja0=r 2 kµ1¡cosa!

Example 2.

fc(e¡x). fc(e¡x) =r 2 Z 1 0 e¡xcos!xdx=r 2

¢e¡x

1 +w2(¡cos!x+!sin!x)j10

p

2=¼

1 +!2

13.2 Properties of Fourier Cosine/Sine Transforms

- Linear operations fc(af+bg) =r 2 Z 1 0 [af(x) +bg(x)]cos!xdx =ar 2 Z 1 0 f(x)cos!xdx+br 2 Z 1 0 g(x)cos!xdx =a^fc(f) +b^fc(g) (a) ^fc(af+bg) =a^fc(f) +b^fc(g) (b) ^fs(af+bg) =a^fs(f) +b^fs(g)(7)

Theorem 1

[Cosine and sine transforms of derivatives] Letf(x) be continuous and absolutely integrable on thex-axis, letf0(x) be piecewise con- tinuous on each ¯nite interval, and letf(x)!0 asx! 1. Then (a) ^fc[f0(x)] =!^fs[f(x)]¡q 2 f(0) (b) ^fs[f0(x)] =¡!^fc[f(x)](8) 2

Proof.

fc[f0(x)] =r 2 Z 1 0 f0(x)cos!xdx r 2 f(x)cos!xj10+!Z 1 0 f(x)¢sin!xdx¸ =!^fs[f(x)]¡r 2 f(0) fs[f0(x)] =r 2 Z 1 0 f0(x)sin!xdx r 2 f(x)sin!xj10¡!Z 1 0 f(x)cos!xdx¸ =¡!^fc[f(x)] (a) ^fc[f00(x)] =!^fs[f0(x)]¡q 2 f0(0) =¡!2^fc[f(x)]¡q 2 f0(0) (b) ^fs[f00(x)] =¡!^fs[f0(x)] =¡!2^fs[f(x)] +q 2 !f(0)(9)

Example 3.

An application of the operational formula (9)

Find the Fourier cosine transform off(x) =e¡ax, wherea >0. solution) (e¡ax)00=a2¢e¡ax=)a2f(x) =f00(x) a

2^fc(f) =^fc(f00) =¡!2^fc(f)¡r

2 f0(0) =¡!2^fc(f) +ar 2 (a2+!2)^fc(f) =ar 2 ^fc(e¡ax) =r 2 2 a (a >0)

13.3 Fourier Transform

Complex Form of the Fourier Integral

- The real Fourier integral is f(x) =Z 1 0 [A(!)cos!x+B(!)sin!x]d! where

A(!) =1

Z 1 ¡1 f(v)cos!vdv; B(!) =1 Z 1 ¡1 f(v)sin!vdv: 3 - SubstitutingA(!) andB(!) into the integral forf, we have f(x) =1 Z 1 0Z 1 ¡1 f(v)[cos!vcos!x+ sin!vsin!x]dvd! 1 Z 1 0· Z1 ¡1 f(v)cos(!x¡!v)dv¸ d!

F(!) =Z

1 ¡1 f(v)cos(!x¡!v)dv -F(!) is an even function, since cos!(x¡v) is an even function of!. For example, f(x) =Rc

¡ccosxtdt=1

x sinxtjc¡c=2sincx x f(¡x) =2sin(¡cx)

¡x=2sincx

x =f(x) )f(x) is an even function. -f(v) does not depend on!, and we integrate with respect tov. f(x) =1 Z 1 0

F(!)d!=1

2¼Z

1 ¡1

F(!)dx

f(x) =1

2¼Z

1

¡1·

Z1 ¡1 f(v)cos(!x¡!v)dv¸ d! (10) f(x) =1

2¼Z

1

¡1·

Z1 ¡1 f(v)sin(!x¡!v)dv¸ d!= 0 (11)

G(!) =Z

1 ¡1 f(v)sin(!x¡!v)dv -G(!) is an odd function since sin(!x¡!v) is an odd function of!. - (1) +i(2) witheix= cosx+isinx(Euler formula) f(v)cos(!x¡!v) +if(v)sin(!x¡!v) =f(v)ei(!x¡!v) -Complex Fourier Integral )f(x) =1quotesdbs_dbs4.pdfusesText_8