[PDF] [PDF] cours darithmétique complet

Ce document est la premi`ere partie d'un cours d'arithmétique écrit pour les él` eves pré- parant les olympiades internationales de mathématiques Le plan 



Previous PDF Next PDF





[PDF] cours darithmétique complet

Ce document est la premi`ere partie d'un cours d'arithmétique écrit pour les él` eves pré- parant les olympiades internationales de mathématiques Le plan 



[PDF] Cours darithmétique

mais il est fortement recommandé de lire ce chapitre avant d'aborder le cours L'arithmétique est l'étude des propriétés des nombres entiers, appelés aussi 



[PDF] ARITHMETIQUE

Lise Jean-Claude - Cours d'arithmétique -Terminale S 1/16 ARITHMETIQUE Partie des mathématiques étudiant les propriétés élémentaires des nombres 



[PDF] Cours darithmétique

mais il est fortement recommandé de lire ce chapitre avant d'aborder le cours L'arithmétique est l'étude des propriétés des nombres entiers, appelés aussi 



[PDF] Résumé du cours darithmétique

Résumé du cours d'arithmétique Les ensembles N et Z N = {0, 1, 2, 3, } est l' ensemble des entiers naturels (entiers positifs) Z = { , −2, −1, 0, 1, 2, 3,



[PDF] Arithmétique - Licence de mathématiques Lyon 1

Maths en L˙1gne Arithmétique UJF Grenoble 1 Cours 1 1 Nombres premiers On appelle entier (ou entier relatif, c'est-à-dire positif ou négatif) tout élément de



[PDF] COURS DARITHMÉTIQUE par Boyer Pascal

COURS D'ARITHMÉTIQUE 5 o`u les ak sont des entiers positifs < b presque tous nuls En effet on effectue la division euclidienne de n = bq0 + a0 par b, puis  



[PDF] Arithmétique

13 fév 2013 · Maths en Ligne Arithmétique 3 14 La course aux nombres premiers Ainsi, comme partout ailleurs, dans ce cours, le nombre 3 est un



[PDF] Arithmétique - Maths au lycée

COURS DE SPÉCIALITÉ MATHÉMATIQUES Terminale S L'arithmétique est un des secteurs scientifiques les plus anciens et les plus féconds Fondée es-



[PDF] Arithmétique dans Z - Maths-francefr

(théorème fondamental de l'arithmétique) Tout entier naturel supérieur ou égal à 2 se décompose de manière unique, à l'ordre près des facteurs, en produit de



pdf Exo7 - Cours de mathématiques

Arithmétique Vidéo Vidéo Vidéo Vidéo partie 1 Division euclidienne et pgcd partie 2 Théorème de Bézout partie 3 Nombres premiers partie 4 Congruences Fiche d’exercices Arithmétique dans Z



Searches related to arithmétique dans z cours

Alors 2(ab + bc + ca) = 8pq + 8qr + 8pr + 8(p + q + r) + 6 donc 2(ab + bc + ca) 6 (mod 8) Montrons par l’absurde que le nombre a2 + b2 + c2 n’est pas le carré d’un nombre entier Supposons qu’il existe n 2 N tel que a2 + b2 + c2 = n2 Nous savons que a2 + b2 + c2 3 (mod 8)

[PDF] arithmétique dans z exercices corrigés mpsi

[PDF] arithmétique dans z exercices corrigés pdf

[PDF] arithmétique exercices et problèmes

[PDF] arithmétique terminale s exercices corrigés

[PDF] arjel analyse trimestrielle

[PDF] arjel t1 2016

[PDF] arjel t2 2016

[PDF] armande le pellec muller

[PDF] armateur nantais negrier

[PDF] armature urbaine définition

[PDF] armement du chevalier

[PDF] armes autorisées en belgique

[PDF] armor electric system

[PDF] arnold blueprint to cut

[PDF] arrêt 7 mai 2008 rétractation de l'offre

Cours d"arithm´etique

Premi`ere partie

PierreBornsztein

XavierCaruso

PierreNolin

MehdiTibouchi

D´ecembre 2004

Ce document est la premi`ere partie d"un cours d"arithm´etique ´ecrit pour les ´el`eves pr´e-

parant les olympiades internationales de math´ematiques. Le plan complet de ce cours est :

1. Premiers concepts

2. Division euclidienne et cons´equences

3. Congruences

4.´Equations diophantiennes

5. Structure deZ/nZ

6. Sommes de carr´es

7. Polynˆomes `a coefficients entiers

8. Fractions continues

Cette premi`ere partie traite les quatre premiers chapitres. Les quatre derniers chapitres forment quant `a eux la deuxi`eme partie de ce cours. Contrairement `a la seconde partie, cette premi`ere partie se veut le plus ´el´ementaire

possible. Les notions abstraites, souvent plus difficiles `a assimiler, mais qui clarifient les id´ees

lorsqu"elles sont comprises, ne sont ´evoqu´ees que dans la seconde partie. Nous conseillons au lecteur de bien maˆıtriser ce premier tome avant de passer `a la lecture du second.

Les notions et les th´eor`emes introduits ici sont g´en´eralement tout `a fait suffisants pour

traiter les exercices propos´ees aux olympiades internationales de math´ematiques.

Vous trouverez `a la fin de chaque chapitre une s´erie d"exercices de difficult´e variable mais

indiqu´ee par des ´etoiles

1. Toutes les solutions sont rassembl´ees `a la fin du document.

Nous vous souhaitons bon apprentissage et bonne lecture. 1 Plus nous avons jug´e l"exercice difficile, plus le nombre d"´etoiles est important. 1

Liste des abbr´evations :

AMM American Mathematical Monthly

APMO The Asian Pacific Mathematics Olympiad

CG Concours g´en´eral

OIM Olympiades Internationales de Math´ematiques

SL Short List

TDV Tournoi Des Villes

Liste des notations :

?ensemble vide

Nensemble des entiers naturels (positifs ou nuls)

N ?ensemble des entiers naturels strictement positifs

Zensemble des entiers relatifs

Qensemble des nombres rationnels

Rensemble des nombres r´eelsPsymbˆole de sommation2Qsymbˆole de produit3 a|b adiviseb [x]partie enti`ere dex {x}partie d´ecimale dex pgcdplus grand commun diviseur a?bpgcd(a,b) ppcmplus petit commun multiple a?bppcm(a,b) a≡b(modN)aest congru `abmoduloN pun nombre premier v p(n)valuationp-adique den d(n)nombre de diviseurs positifs den

σ(n)somme des diviseurs positifs den

?fonction indicatrice d"Euler s b(n)somme des chiffres denen baseb π(n)nombre de nombres premiers inf´erieurs ou ´egaux `an a n...a0b´ecriture en baseb n!factorielle den:n! = 1×2× ··· ×n C k ncoefficient binomial : Ck n=n! k!(n-k)! u n≂vnles suites(un)et(vn)sont ´equivalentes 2 Une somme index´ee par l"ensemble vide est ´egale `a0.

3Un produit index´e par l"ensemble vide est ´egale `a1.

2

Table des mati`eres

1 Premiers concepts 4

1.1 Divisibilit´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Nombres premiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Valuationp-adique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Quelques fonctions arithm´etiques . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Nombres rationnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Division euclidienne et cons´equences 24

2.1 Division euclidienne et d´ecomposition en baseb. . . . . . . . . . . . . . . . 24

2.2 Algorithme d"Euclide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Algorithme d"Euclide ´etendu et th´eor`eme de B´ezout . . . . . . . . . . . . . . 28

2.4 Lemme de Gauss et cons´equences . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Congruences 37

3.1 D´efinition, premi`eres propri´et´es . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Crit`eres de divisibilit´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Ordre d"un ´el´ement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Th´eor`eme chinois . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Congruences modulop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Congruences modulopn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Coefficients binomiaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4

´Equations diophantiennes 56

4.1 Quelques r´eflexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Utilisation des congruences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Descente infinie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4´Equations de degr´e2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5´Equations de degr´e3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Corrig´e des exercices 75

5.1 Exercices de"Premiers concepts». . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Exercices de"Division euclidienne et cons´equences». . . . . . . . . . . . . 103

5.3 Exercices de"Congruences». . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4 Exercices de"´Equations diophantiennes». . . . . . . . . . . . . . . . . . . 143

3

1 Premiers concepts

Cette section, comme son nom l"indique, pr´esente le concept de base de l"arithm´etique,

`a savoir la divisibilit´e. On introduit ensuite les nombres premiers ce qui permet d"´enoncer le

th´eor`eme fondamental de l"arithm´etique (c"est-`a-dire la d´ecomposition en facteurs premiers)

dans lequel les nombres premiers jouent le rˆole de briques ´el´ementaires pour la fabrication

des nombres.

1.1 Divisibilit´e

D´efinition 1.1.1Siaetbsont deux entiers, on dit queadiviseb, ou quebestdivisible para, s"il existe un entierqtel queb=aq. On dit encore queaest undiviseurdeb, ou que best unmultipledea. On le notea|b.

Propri´et´es

+Siaetbsont deux entiers avecb?= 0,bdiviseasi et seulement si la fractiona b est un entier. +Tous les entiers divisent0, et sont divisibles par1. +Un entiernest toujours divisible par1,-1,net-n. +Sia|b, etb|c, alorsa|c. +Sia|b1,b2,...,bn, alorsa|b1c1+b2c2+...+bncn, quels que soient les entiersc1,c2,...,cn. +Siadivisebetb?= 0, alors|a|6|b|. +Siadivisebetbdivisea, alorsa=±b. +Siaetbsont deux entiers tels quean|bnpour un entiern>1, alorsa|b.

Toutes les propri´et´es list´ees pr´ec´edemment sont imm´ediates, `a l"exception de la derni`ere dont

la d´emonstration n"est pas triviale sans bagage arithm´etique. Une preuve possible consiste

`a utiliser la caract´erisation de la divisibilit´e par les valuationsp-adiques (voir paragraphe

1.3). Voyons imm´ediatement deux exercices qui montrent comment on peut manipuler la no- tion de divisibilit´e :

Exercice

: Soientxetydes entiers. Montrer que2x+ 3yest divisible par7si et seulement si5x+ 4yl"est.

Solution

: Supposons que7divise2x+3y, alors il divise6(2x+ 3y)-7(x+ 2y) = 5x+4y. R´eciproquement si7divise5x+ 4y, il divise6(5x+ 4y)-7(4x+ 3y) = 2x+ 3y.⎷

Exercice

: Pour quels entiersnstrictement positifs, le nombren2+ 1divise-t-iln+ 1?

Solution

: Sin2+1divisen+1, comme tout est positif, on doit avoirn2+16n+1, ce qui n"est v´erifi´e que pourn= 1. On v´erifie ensuite quen= 1est bien solution.⎷ 4

Parties enti`eres

D´efinition 1.1.2Sixest un r´eel, on appellepartie enti`eredex, et on note[x], le plus grand entier inf´erieur ou ´egal `ax. Ainsi, on a[x]6x <[x] + 1. Remarque.On d´efinit aussi lapartie d´ecimaledex, comme la diff´erencex-[x]. La partie

d´ecimale dexest souvent not´ee{x}. Cette notion est moins utilis´ee que la notion de partie

enti`ere et les conventions de notations sont moins usuelles `a ce propos : lors d"un exercice,

ou d"un expos´e, il est toujours de bon goˆut de commencer par pr´eciser les notations qui vont

ˆetre employ´ees par la suite.

Notons qu"il fautˆetre prudent avec les nombres n´egatifs : autant pour les nombres positifs, la partie enti`ere correspond au nombre auquel on retire ses chiffres apr`es la virgule, autant

ce n"est pas le cas pour les nombres n´egatifs. En effet, si on suit la d´efinition, on voit par

exemple que[-3,5] =-4.

Les parties enti`eres et parties d´ecimales ob´eissent `a quelques propri´et´es ´el´ementaires que

nous listons ci-dessous :

Propri´et´es ´el´ementaires

+On a toujoursx= [x] +{x}. +Pour tout r´eelx, on ax-1<[x]6x +Sixest entier,[x] =xet{x}= 0. Et r´eciproquement si l"une des deux ´egalit´es est v´erifi´ee, alorsxest entier. +[-x] =-[x]-1sauf sixest entier, auquel cas[-x] =-[x]. +Sixetysont deux r´eels,[x] + [y]6[x+y]6[x] + [y] + 1. +Sim >0est un entier, alors il y a exactement[x m ]multiples demcompris entre1et x.

La d´emonstration des propri´et´es consiste en de simples manipulations de la d´efinition et

principalement de l"in´egalit´e[x]6x <[x] + 1. Elle est laiss´ee au lecteur. On remarquera que tr`es souvent les questions faisant intervenir des parties enti`eres se r´esument `a de la manipulation d"in´egalit´es comme le montre par exemple l"exercice suivant :

Exercice

: On suppose que4n+ 2n"est pas le carr´e d"un nombre entier. Montrer que pour n>0, on a :h⎷ n+⎷ n+ 1i =h⎷

4n+ 2i

Solution

: Remarquons tout d"abord que l"on a toujours l"in´egalit´e : n+⎷ n+ 1<⎷ 4n+ 2 En effet, en ´elevant au carr´e, on a `a comparer2n+ 1 + 2⎷ n

2+net4n+ 2, soit2⎷

n 2+n

et2n+ 1et l"in´egalit´e devient ´evidente apr`es une nouvelle ´el´evation au carr´e.

Il reste `a prouver qu"il n"existe aucun entierktel que : n+⎷ n+ 1< k6⎷ 4n+ 2 5 soit, encore en ´elevant au carr´e qu"il n"existe aucun entierktel que :

2n+ 1 + 2⎷

n

2+n < k264n+ 2

Mais il est clair que4n+ 1<2n+ 1 + 2⎷

n

2+net un tel entierkv´erifiraita fortiori

4n+ 1< k264n+ 2. Commekest entier, il vient forc´ementk2= 4n+ 2, mais cela n"est

pas possible puisque l"on a suppos´e que4n+ 2n"´etait pas le carr´e d"un entier.⎷ Remarque.En fait,4n+ 2n"est jamais le carr´e d"un entier. En effet, le nombre4n+ 2est

pair, et s"il ´etait le carr´e d"un entier, il serait le carr´e d"un entier pair. Mais alors4n+ 2

devrait ˆetre un multiple de4, ce qui n"est, `a l"´evidence, pas le cas. L"´egalit´e pr´ec´edente de

parties enti`eres est donc valable pour tout entiern>1, sans hypoth`ese suppl´ementaire. Une propri´et´e amusante des parties enti`eres qui montre ´egalement que parfois (souvent)

les manipulations d"in´egalit´es ne sont pas faciles est le th´eor`eme de Beatty que voici :

Th´eor`eme 1.1.3 (Beatty)Soientαetβdeux r´eels strictements positifs. On noteSα

(resp.Sβ) l"ensemble des entiers strictement positifs qui s"´ecrivent sous la forme[nα](resp.

[nβ]) pour un certain entiern. Les ensemblesSαetSβforment une partition deN?si, et seulement siαetβsont irrationnels et v´erifient 1 +1 = 1. D´emonstration.Commen¸cons par supposer queαetβsont des irrationnels v´erifiant1 1 = 1. Soitkun entier strictement positif. Il est dans l"ensembleSαsi et seulement s"il existe un entierntel que : nα-1< k < nα

l"in´egalit´e de droite ´etant stricte carαest suppos´e irrationnel. L"´equation se transforme et

donne :k ff

¡ n ¡k

ff +1 ff ,k ff +1

£contient un entier. De mˆeme

k?Sβsi et seulement si l"intervallei k fi ,k fi +1 h contient un entier. ff ,k ff + 1£est de longueur1et ses bornes sont irrationnelles, donc il contient un et un seul entiern. Sin ¡ k+ 1-n fi +1

et donck?Sβ. Sik´etait `a la fois ´el´ement deSαet deSβ, il y aurait un entier dans

ff ,k ff +1

£et un dans l"intervallei

k fi ,k fi +1 h et donc par le mˆeme raisonnement ff ,k ff + 1£, ce qui n"est pas possible. 6 R´eciproquement, supposons queSαetSβforment une partition deN?. Consid´erons un entierkstrictement positif. Il y a£k ff y ah k fi i entiers dans{1,...,k}qui sont dansSβ. Du fait de la partition, il vient : ·k ff +·k fi =k pour toutk. En faisant tendrekvers l"infini, il vient : 1 +1 = 1 ce qui d´emontre la deuxi`eme condition. Supposons maintenant par l"absurde queαsoit rationnel. Alors il en est de mˆeme deβ d"apr`es la relation pr´ec´edente.´Ecrivonsα=a b etβ=c d . L"entieracest ´el´ement deSα(en prenantn=bc) et ´egalement ´el´ement deSβ(en prenantn=ad), ce qui est contradictoire.

PgcdetPpcm

Ce paragraphe introduit les d´efinitions depgcdetppcmqui sont deux notions fonda-

mentales de l"arithm´etique et en donne leurs principales propri´et´es. Les d´emonstrations qui

ne sont pas ´evidentes sont report´ees au chapitre 2 et seront vues comme cons´equence de la

division euclidienne. D´efinition 1.1.4Soientaetbdeux entiers non tous deux nuls. L"ensemble des diviseurs communs deaet debest fini et non vide, il poss`ede donc un plus grand ´el´ement appel´eplus grand commun diviseur(pgcd) deaetbet not´epgcd(a,b). Lorsquepgcd(a,b) = 1, on dit queaetbsontpremiers entre eux. De mˆemeaetbposs`edent un plus petit multiple commun positif, on l"appelle leplus petit commun multiple(ppcm) deaet debet on le noteppcm(a,b).

Propri´et´es

+Sid=pgcd(a,b), alorsndiviseaetbsi et seulement sindivised. +Sim=ppcm(a,b), alorsnest un multipleaet debsi et seulement sinest un multiple dem. +Sia,betnsont des entiers non nuls etn >0, alorspgcd(na,nb) =npgcd(a,b). Si de plusndiviseaetb, alorspgcd¡a n ,b n

¢=1

n pgcd(a,b). +Sid=pgcd(a,b), on peut ´ecrirea=da?etb=db?poura?etb?des nombres premiers entre eux. +Siaetbsont des entiers, l"´egalit´epgcd(a,b) =pgcd(a,a+b)est toujours v´erifi´ee lorsqu"elle a un sens. En particulier, lepgcdde deux nombres cons´ecutifs est1, et plus g´en´eralement, lepgcddeaet dea+nest un diviseur positif den. +Plus g´en´eralement, six,y,a,b,a?etb?sont des entiers alors : En particulier si|ab?-ba?|= 1, alorspgcd(x,y) =pgcd(ax+by,a?x+b?y). 7

Ces propri´et´es sont ´el´ementaires. Souvent, pour prouver l"´egalit´e de deuxpgcd, on

montre que chacun despgcddivise l"autre. C"est la m´ethode que l"on utilise majoritai- rement ici. Expliquons comment on proc`ede pour montrer qu"unpgcden divise un autre en donnant un preuve de la derni`ere propri´et´e qui est la plus difficile : notonsd=pgcd(x,y). Alorsddivisexetyet donc il diviseax+byeta?x+b?ypuis leurpgcd. De mˆeme, soit d ?=pgcd(ax+by,a?x+b?y), alorsd?diviseb?(ax+by)-b(a?x+b?y) = (ab?-ba?)xet a ?(ax+by)-a(a?x+b?y) = (a?b-b?a)y. Ainsid?divisepgcd((ab?-ba?)x,(a?b-b?a)y) = |ab?-ba?|pgcd(x,y), ce qui conclut. Citons ´egalement des r´esultats classiques et souvent assez utiles :

Propri´et´es

+Siaetbsont des entiers non nuls alorspgcd(an,bn) =pgcd(a,b)npour tout entier n>0. +Sia,betcsont des entiers non nuls, on a : pgcd(a,ppcm(b,c)) =ppcm(pgcd(a,b),pgcd(a,c)) ppcm(a,pgcd(b,c)) =pgcd(ppcm(a,b),ppcm(a,c)) +Th´eor`eme de B´ezout.Siaetbsont des entiers premiers entre eux, alors il existe des entiersuetvtels queau+bv= 1. +Lemme de Gauss.Si des entiersa,betcsont tels queadivisebcetapremier avecb, alorsadivisec. +Si deux entiers premiers entre euxaetbdivisentn, alors le produitabdivise ´egalement n.

Ces propri´et´es sont plus difficiles. Les deux premi`eres r´esultent par exemple directement de

l"expression depgcd(a,b)en fonction de la d´ecomposition en facteurs premiers deaet de b(voir la partie surle th´eor`eme fondamental de l"arithm´etiquedans le paragraphe 1.2). Les

autres r´esultent des propri´et´es de la division euclidienne que nous ´etudions au chapitre 2.

Leur d´emonstration est donc report´ee aux paragraphes 2.3 et 2.4. Donnons `a pr´esent deux exercices qui montrent comment l"on peut manipuler les faits pr´ec´edents :

Exercice

: On d´efinit len-i`emenombre de Fermatpar la formuleFn= 22n+1. Montrer que lesFnsont deux `a deux premiers entre eux.

Solution

: On remarque que : F n+1-2 = 22n+1-1 =¡22n-1¢¡22n+ 1¢ 2

2n-1-1´³

2

2n-1+ 1´¡22n+ 1¢=FnFn-1···F0

Soitdun diviseur commun deFnetFm. Supposons par exemplen < m. D"apr`es la formule pr´ec´edente, commeddiviseFn, il diviseFm-2et donc2. LesFnsont clairement impairs, la seule solution est d"avoir|d|= 1. Ceci prouve queFnetFmsont premiers entre eux.⎷ 8 Exercice: Soientaetbdes nombres premiers entre eux. Montrer queabeta+bsont aussi premiers entre eux.

Solution

: Soitdun diviseur commun deabet dea+b. Alorsddivisea(a+b)-ab=a2. De

mˆemeddiviseb2. D"apr`es une des propri´et´es pr´ec´edentes, les entiersa2etb2sont premiers

entre eux. Ainsid=±1, ce qui conclut.⎷

1.2 Nombres premiers

D´efinition et exemples

Comme nous l"avons dit dans l"introduction de cette partie, les nombres premiers sont

les briques ´el´ementaires pour fabriquer les nombres. De fa¸con plus pr´ecise et moins imag´ee,

on a la d´efinition suivante : D´efinition 1.2.1Un entiern >0est ditpremiers"il est diff´erent de1et s"il n"admet aucun diviseur positif diff´erent de1etn. Un tel diviseur est appel´ediviseur strict. Un nombre qui n"est pas premier est appel´enombre compos´e. Par d´efinition, donc,1n"est pas premier. C"est une simple convention mais elle s"av`ere utile

pour l"´enonc´e des th´eor`emes comme vous allez (peut-ˆetre) vous en rendre compte. Les entiers

2,3,5,7,11,13sont les premiers nombres premiers. Le nombre6, n"est par contre pas premier

car on peut ´ecrire6 = 2×3(et donc2(ou3) est un diviseur strict de6). Proposition 1.2.2Soitn >1un entier. Son plus petit diviseurd >1est un nombre premier. Si de plusnest compos´e, alorsd6⎷ n. D´emonstration.Supposons quedne soit pas premier. Alors par d´efinition, il existe un diviseur strictd?ded. Mais alorsd?divisen,d?>1etd?< d, ce qui contredit la minimalit´e ded. Commeddivisen, on peut ´ecriren=dd?. On ad >1et commenn"est pas premier, d < n. Ainsid?est un diviseur denstrictement sup´erieur `a1. Par minimalit´e ded, on obtientd?>det doncn>d2puis finalementd6⎷

Remarque.On d´eduit de la propri´et´e pr´ec´edente que pour tester si un entiern >1est

premier, il suffit de regarder s"il est divisible ou non par un des entiers compris entre2et⎷ n. Par exemple, pour v´erifier que37est premier, il suffit de voir qu"il n"est divisible ni par

2, ni par3, ni par4, ni par5, ni par6. On aurait ´egalement pu ´eviter les divisions par4et

6si on savait par avance que ces nombres ´etaient compos´es.

La remarque pr´ec´edente nous am`ene `a la m´ethode suivante, appel´eecrible d"´Eratosth`ene

pour lister tous les nombres premiers entre1etn: on ´ecrit `a la suite les uns des autres tousquotesdbs_dbs49.pdfusesText_49