[PDF] [PDF] Ensembles de nombres

La construction formelle de cette ensemble est de nouveau obtenue par Dedekind (1831 − 1916) et la notation Z (du mot allemand Zahlen signifiant nombres) est 



Previous PDF Next PDF





[PDF] ENSEMBLES DE NOMBRES - maths et tiques

Un nombre entier relatif est un nombre entier qui est positif ou négatif L' ensemble des nombres entiers relatifs est noté ℤ = Г3;Г2;Г1;0; 



[PDF] Ensembles de nombres

La construction formelle de cette ensemble est de nouveau obtenue par Dedekind (1831 − 1916) et la notation Z (du mot allemand Zahlen signifiant nombres) est 



[PDF] Les ensembles des nombres - AlloSchool

Les nombres entiers L'ensemble des entiers relatifs positifs est égal à l' ensemble des entiers naturels + = Z N est l'ensemble des nombres décimaux 10m



[PDF] Les ensembles de nombres - Serveur de mathématiques - LMRL

On va donc agrandir l'ensemble des nombres rencontrés jusqu'à présent par les nombres rationnels (du latin : ratio = fraction) Chaque nombre rationnel peut s' 



[PDF] Les grands ensembles de nombres - Département de

Une seconde approche part de l'ensemble des nombres réels R, au préalable construit par une axiomatique appropriée, puis définit N comme étant le plus petit



[PDF] Ensembles de nombres : N ⊂ Z ⊂ D ⊂ Q ⊂ R

On a déjà défini les ensembles d'entiers naturels (N) : 0 est un entier naturel; et, si n est un L'ensemble des réels R est l'ensemble des nombres admettant un 



[PDF] Construction des ensembles de nombres N, Z et Q - webusersimj

Définition - L'ensemble quotient N2/R est noté Z et ses éléments sont appelés les entiers relatifs Exemples - Le couple d'entiers naturels (1,4) définit l'entier relatif



[PDF] REGLES DE CALCUL, ENSEMBLES DE NOMBRE, ORDRE

Les ensembles de nombres étudiés sont stables pour l'addition et la multiplication Définition: L'ensemble des nombres entiers naturels, noté É, est constitué 

[PDF] Méthodes sur le produit scalaire

[PDF] 1 Ouvert, fermé, compact

[PDF] Intégration et théorie de la mesure

[PDF] 1 Ouvert, fermé, compact

[PDF] 1 Ouvert, fermé, compact

[PDF] Exercice 4 (fiche 2) Etablir si les ensembles sont ouverts, fermés

[PDF] Ouverts et fermés

[PDF] 1 Ouvert, fermé, compact

[PDF] Logique, ensembles et applications - Exo7 - Emathfr

[PDF] Logique, ensembles et applications - Exo7 - Emathfr

[PDF] enseñar geografía para los nuevos tiempos - Revistas UPEL

[PDF] ARRÊTÉ N°

[PDF] ARRÊTÉ N°

[PDF] calendrier des concours MINESUPpdf

[PDF] ARRÊTÉ N°

[PDF] Ensembles de nombres

Chapitre1

Ensemblesdenombres

Enmat hŽmatiquesnoussommesconfrontŽsˆdiffŽrentsensembles.Lesplus simplesdÕent res euxsont desensemblesdeno mbres.N ousallonsŽtudiŽscerta inespropriŽ tŽsdecesderniersdans cech apitre.

1.1Intr oduction

Certainsnombresapparai ssentnaturellementda nsleviedetouslesjo urs(notamme ntlorsquÕil

sÕagitdedŽnombr erdesq uantitŽsdiversesetvariŽes).P ourtantlaconst ructionh istorique(dÕun

pointdevuema thŽmat ique)dece sensemblesnÕestpasforcŽmentcelle quelÕonim agine.Voici quelquesmotsˆcesujet : ¥Lesno mbresentierssontconnus depuisEuclide(env iron300av.J.C. ),lanotationN ¥Lesn ombresentiersrelatifs( possŽdantŽventuell ementunsigneÇffÈ)appa raissentdansdes textesdumathŽm aticien sindienårybhata(476ff550):i lsp ermettentd etraiterlanotion dede ttesetderecettes .Cesnom bres sontŽgalementprŽsentsdanslesŽcritsduperseAbu I-Wafa(940ff998);enrev anche,i lfautattendrelestravauxde Stevin (1548ff1620)pou r quÕilsapparaise ntenEurope.Laconstructionformell edecetteensembl eestdenouveau obtenueparDedekind( 1831ff1916)e tlanotat ionZ(dumota llemandZahlensigniÞant ¥Lano tiondefractionestdŽjˆ prŽsent edansdespapyrusŽgyptiens(notammen tlepapyrus Rhinddatantdeff1650av .J.C.)mais leurvŽritablecons tructionmath Žmatiqueda tedes travauxdePeanoen18 95;ilc hoisitlalettreQ(delÕi talienquozientesigniÞantquotient) pourdŽsig nerdetelsnombres.

¥Certainsnombrescommeffou

CantoretDedekind .

7

8CHAPITRE1.ENSEMBL ESDENO MBRES

1.2Nombr esentiers

Lesno mbreslesplussimplesˆ manipu lersontlesnom bresentiers. DŽÞnition1.2.1.1.LÕe nsembleNdŽsignelÕensemble desentierspositifs.Autrementdit,

N={0,1;2 ,...;100;...;}

2.L ÕensembledesentiersrelatifsZdŽsignelÕensemblede snombresentiers.Autrementdit,

Remarque.Enpart iculier,N#Zcecisi gniÞequetouslesŽlŽmentsde NsontŽgale mentdesŽlŽments

propriŽtŽsdecesdeuxensemblesplus tar ddanslÕannŽe .

1.3Nomb resfractionnaires

DÕautresnombresappara issentnaturellementd anslaviedetouslesjou rs,ilsÕag itdesnombres fractionnaires.Cesdernierssontobtenuslorsq uedesprop ortionsdÕunquant itŽdonnŽeestm iseen jeu(le tiersdÕun g‰teau,unedemi- heure,etc). Cesensemblescon tiennentlesensemblesdÕentiers introduitsplust™t.VoicilÕundÕe ntreeux. DŽÞnition1.3.1.LÕensembledesnombresdŽcimau xDestcomp osŽdenombresdelaforme a 10 n aveca$Z,n$N

Exemple1.3.1.1.ff1$Dcarff1=

a 10 n aveca=ff1$Zetn=0$N.

2.20,3$Dcar20,3=

a 10 aveca=203$Z. Iles timportan tdÕobserverquetoutnombredŽ cimaladmetundŽveloppementdŽcimalavecun Exemple1.3.2.Voiciquelque sexemplesillustrantcett epropriŽtŽ: 1 2 =0,5;ff 3 25
=ff0,12; 217
125
=1,736 DŽÞnition1.3.2.LÕensembledesnombresrationn elsQestcom posŽdenombredelaforme a b aveca$Z,b$Z ff

1.3.NOM BRESFRACTIONNAIRES9

Remarque.Enpart iculierD#Q.Pourcela,ilsu"tdÕobserverquetousŽlŽmentsdeDsՎcritdela faonsuivante a 10 n a b avecb=10 n $Z ff

Quelquesexemplesdenomb resrationels.

a b aveca=107$Zet b=22$Z ff 2. 1 3 =0,33333...$Qcar 1 3 a b aveca=1$Zetb=3$Z ff Remarque.Iles tpossible demontrerquetousŽlŽment sdeQpeuventsՎcrireave cunnombreÞni indŽÞniment. Iles talorsnat ureldesÕinterr ogersurlefaitsuivant: 1 3 =0,3333333... sÕagitdÕunŽlŽmen tdeQmaissepou rrait- ilque 1 3 $D?

Commenousallo nslevoir

1 3 DŽÞnition1.3.3.Touslesno mbresdivi siblespar3peuventsՎcriredel afaonsuivante:

3aaveca$Z(1.3.1)

Exemple1.3.4.Ils u"tdeprendrequelquesexemplespoursÕenconvaincre:3=3%1,27=

3%9,....Enrevanche,5 nÕe stpasdivisiblepar3caril nÕe stpaspossibledÕexprimer5souslaforme

5=3aaveca$Z(ici,ilestes sentiel queasoitunenti errela tif).

composeestdivisibl epar3. Exemple1.3.5.Parexem ple,27estdivisiblepar3c ar2+7= 9estdivis iblepar3;25nÕestpas divisiblepar3car3nedivisepa s2+5= 7. Nouspouvon sˆprŽsentnousattaquera urŽ sultatsuivant.

Proposition2.

1 3 $Qmais 1 3 /$D.

10CHAPITRE1.ENSEMBLE SDENOM BRES

DŽmonstration.LadŽm onstrationdececisefaitparlÕabsurde:nousallonssupposerle contrairedece quenousso uhaitonsdŽ montre r(i.e. 1 3 $D)aÞndÕaboutirˆunecontradiction .

Supposonsdonc,parlÕabsur de,que

1 3 existea$Zetn$Ntelque 1 3 a 10 n Nousallons voirquecetteidentitŽv anousamenerˆ unecontradiction.Pourcela,ilsu"tdÕobserver quecett eidentitŽpeutsÕ Žcriresouslaforme 10 n =3a.

Ainsi,10

n estunmu ltiple de3(pardŽÞnition,cf.1.3.1),ce ciestabsurd ecarlasom medeschiffres composant10 n (cenom brenÕestriendÕautre que1suivitdenzŽros)vaut1qu inÕestpasdivi sib le par3(c f.pr oposition1)

1.4Nombr esrŽels

VoyonsenÞnunder nierensemble ,plus grandencore:celuidesnombresrŽels.Intuitivement, ilco ntienttouslesnombresqu enouspouvons renco ntrerdanslaviedetouslesjours.Ilestdonc

composŽdetouslesenti ers,det outeslesfracti onsmai sausside tousle sautresnombr esquÕiln Õest

pasposs ibledÕexprimersouslaform edÕunefractionoudÕunnombreentier( certainsracinescarrŽ es

parexe mple). DŽÞnition1.4.1.LÕensembledesnombresrŽelsRestcomp osŽdetouslesnombresusuels:

R={...,ff;

2;ff4;

45
7 ;0,234;4372...} Remarque.1.Il estsouv entutiled ereprŽsentercetense mbledenombregraphiquementˆlÕaide

dÕunedroit egraduŽe.Danscecas ,ilestalorspossibl edÕassocierˆunnombre rŽe lˆtout point

Mdece ttedroitegraduŽe. CenombreestappelŽa bscissedupointM.

2.Ob servonsŽgalementquelenombre

alorsnature ldesedemandersi 2$Q. CommenouslÕav onsfaitremar querplust™t,lesinclu sionssuivantessontvŽriގes

N#Z#D#Q#R

Ile xisteencoredenombr euxensemblesenmat hŽmati quesmaisilfaudrapatienterencorepourles

Žtudier.

PythagoreŽtaientp ersuadŽsquetouteslongue urspouvanttredes sinerdevaitaussisՎcrire comme

unnom brerationnel(i. e.unefraction a b $Q).Il sfurentbi enennuyŽfaceˆlÕhy potŽnusedÕun

2etcommenousallonslevoir

2/$Q.CeciseratraitŽdansunD.M.

1.5.ENCA DREMENTPARDESNOMBRESDƒCIMAUX11

Proposition3.

2/$Q. DŽmonstration.Cf.D.M. (donnŽdansle chapitredÕarithmŽ tique)

1.5Encad rementpardesnombresdŽcimaux

IlnÕ estpaspossibled Վcrire

iles talorspra tiquedetrouve runencadrementdecelui- ciˆlÕaidedenomb resdŽc imaux(quisont plussim plesˆmanipuler). DŽÞnition1.5.1.Unenc adrementdŽcimaldÕunnombrerŽe lxestunei nŽgalitŽdela forme d 1 &x&d 2 avecd 1 ,d 2 $D.

Ladi ffŽrenced

2 ffd 1 correspondˆlÕamplitudedelÕe ncad rement.

Exemple1.5.1.Iles tŽvidentq ue1,4<

2<1,5estunencadrementde

2dÕamplitude

1,5ff1,4=0,1=10

"1 virgule. DŽÞnition1.5.2.Soitx$Retc onsidŽronsunencadrementdexdÕamplitude10 "n i.e.d 1 &x&d 2 avecd 1 ,d 2 $Detd 2 ffd 1 =10 "n pourn$N. LÕundeces deuxno mbresestp lusprochede xquelÕaut re,ilsÕagitdelÕarrond iˆ10 "n dex.

Exemple1.5.2.

Sin=3,nousavons1,414&

2vaut1,414.

12CHAPITRE1.ENSEMBLE SDENOM BRES

1.6Sous -ensemblesdeR

Iles tparfois utiledՎtudierdessous -ensemblesdeR,cÕestˆdireunecollectiondenombrerŽels.

1.6.1Lesint ervalles

LorsquenousŽtudieron sdesfonctions, nousauronsˆconsidŽrerdesso us-ensem blesparticuliers deRappelŽsintervalles.IlpeutsÕagirdesegment,dedemi-droiteouencoredeladroitedesr Žels

DŽbutonsparlessegment s:

VoyonsˆprŽsentl eca sdesdemi-droites:

Remarque.1.Il fautpren dregardedansqu elsenslessymbol es[et] sontplacŽs.Silecrochet

esttou rnŽversÇlÕinterieurÈ, celasigniÞe qu elÕextrŽmitŽdusegment(oudelademi-droite)

faitpartid elÕensembleenq uestio n;aucontraire,silecrochetestto urnŽversÇ lÕextŽrieurÈ,

celasign iÞequelÕextrŽmitŽdusegm ent(oudela demi-droite)est exclue.

2.At tentionaufaitsuivant:lessym bole s±'nes ontpasdesnombres rŽelse t,auly cŽe,le

crochetsetrouvant ˆc™tŽde cesymboleesttoujoursouvert (pourexclu recettevaleur).

1.7.ENCA DREMENTETVALEURABSOLUE13

Notonsaupassag equeR=]ff';+'[.Pa rlasuite,ils era importantdesavo irpa sserdÕune notationˆlÕautre.quotesdbs_dbs29.pdfusesText_35