[PDF] [PDF] Les fonctions de référence

1 http ://www maths-france Cette notation obéit aux règles de calcul usuelles sur les exposants que nous ne Pour x ≥ 0 et x = x0 , à partir de l'identité usuelle sur I Cette phrase exacte est une implication et pas une équivalence



Previous PDF Next PDF





[PDF] Equivalents usuels - Maths-francefr

Equivalents usuels Trigonométrie circulaire en 0 sin x ∼ x→0 x tan x ∼ x→0 x Arcsin x ∼ x→0 x Arctanx ∼ x→0 x 1 − cosx ∼ x→0 x2 2 Trigonométrie 



[PDF] Comparaison des fonctions en un point - Maths-francefr

On dit que la fonction f est équivalente à la fonction g en a si et seulement si f g tend vers 1 quand x On donne maintenant un formulaire d'équivalents usuels



[PDF] Comparaison des suites en linfini - Maths-francefr

Formulaire d'équivalents usuels Soit (un) n∈N une suite ne s'annulant pas à partir d'un certain rang telle que lim



[PDF] FICHE : LIMITES ET ÉQUIVALENTS USUELS

Lycée Blaise Pascal TSI 1 année FICHE : LIMITES ET ÉQUIVALENTS USUELS Limites usuelles lnx x −−−−−→ x→+∞ 0 x lnx −−−−−→ x→0+ 0 ln(x)



[PDF] PTSI B 2012-2013 : Un an de maths - Normale Sup

4 août 2013 · Chapitre 1 Fonctions usuelles Logarithme et exponentielle dînent ensemble au resto C'est exponentielle qui paye tout la note, pourquoi?



[PDF] Série dexercices no3 Limites et fonctions usuelles - Licence de

Spécialité : Mathématiques 69622 Villeurbanne cedex, France Analyse 1- 1) Donner un équivalent simple de ch x quand x tend vers +∞ 2) Vérifier que x 



[PDF] Feuille dexercices 10 Développements limités-Calculs de limites

Fondamentaux des mathématiques 2 Feuille d'exercices 10 Développements Donner un équivalent simple de ln(1 + ) en 0 En déduire lim →0



[PDF] Les fonctions de référence

1 http ://www maths-france Cette notation obéit aux règles de calcul usuelles sur les exposants que nous ne Pour x ≥ 0 et x = x0 , à partir de l'identité usuelle sur I Cette phrase exacte est une implication et pas une équivalence



[PDF] Analyse asymptotique - maquisdoc

28 fév 2020 · Formulaire de développements limités usuels d'utilisations commerciale- Partage des Conditions Initiales à l'Identique 2 0 France f dominée par g f négligeable devant g f équivalente à g Ne jamais l'utiliser (en maths)



[PDF] Analyse - Exo7 - Cours de mathématiques

La proposition précédente permet de vérifier que d'autres fonctions usuelles sont Pour avoir une équivalence, avec Jean-Louis Rouget, maths-france

[PDF] Corrigé officiel complet du bac S Espagnol LV2 2010 - Sujet de bac

[PDF] l 'avion du futur Eraole - Laboratoire Océan Vital

[PDF] 2017 Erasmus+ Programme Guide - European Commission

[PDF] 2018 Erasmus+ Programme Guide v1 - European Commission

[PDF] L 'essentiel des chiffres clés - Campus France

[PDF] Erasmus+ Programme Guide - European Commission - Europa EU

[PDF] Erasmus+ Programme Guide - European Commission - Europa EU

[PDF] ERBITUX Avis 2 - HAS

[PDF] Information for applicants to the Starting and Consolidator Grant

[PDF] Information for Applicants to the Advanced Grant 2017 Call

[PDF] ERC Frontier Research Grants Information for applicants to the

[PDF] ERC Advanced Grants 2016 List of Principal Investigators #8211 All

[PDF] Information for Applicants to the Advanced Grant 2017 Call

[PDF] ERC Consolidator Grants - European Research Council - Europa EU

[PDF] ERC Consolidator Grant Panel 2016 - European Research Council

[PDF] Les fonctions de référence

Les fonctions de référence

Plan du chapitre

1Compléments sur la réciproque d"une bijection.......................................................page 2

1.1Rappels ................................................................................................. page 2

1.2Cas particuliers des applications deRdansRdérivables ................................................. page 22Les fonctionsx?→xn,n?N...............................................................................page 3

2.1Etude générale .......................................................................................... page 3

2.2Les fonctions du second degréx?→ax2+bx+c,a?=0.................................................. page 4

3Les fonctionsx?→1

xn,n?N?..............................................................................page 6

3.1Etude générale .......................................................................................... page 6

3.2Les fonctions homographiquesx?→ax+b

cx+d,a?=0,ad-bc?=0.......................................... page 7

4Les fonctionsx?→n⎷x......................................................................................page 9

5Fonctions circulaires.....................................................................................page 13

5.1Les fonctionssinusetcosinus.......................................................................... page 13

5.2La fonctionx?→eix.....................................................................................page 16

5.3Les fonctionstangenteetcotangente....................................................................page 16

6Les fonctions circulaires réciproques..................................................................page 20

3.1Les fonctionsarcsinusetarccosinus.....................................................................page 20

3.1.1 La fonctionarcsinus.............................................................................. page 20

3.1.2 La fonctionarccosinus............................................................................ page 23

3.2La fonctionarctangente................................................................................ page 287Les fonctions logarithmes et exponentielles...........................................................page 30

7.1Un peu d"histoire .......................................................................................page 33

7.2La fonctionlogarithme népérien........................................................................ page 34

7.2.1 Exercices d"introduction ..........................................................................page 34

7.2.2 Définition de la fonction ln ........................................................................page 34

7.2.3 Propriétés algébriques de ln .......................................................................page 35

7.2.4 Etude de la fonction ln ............................................................................page 36

7.2.5 Le nombre deNeper:e..........................................................................page 37

7.3La fonctionexponentielle(de basee) ................................................................... page 38

7.3.1 Exercice d"introduction ...........................................................................page 38

7.3.2 Définition et propriétés de la fonction exponentielle............................................... page38

7.3.3 Changement de notation :ex......................................................................page 39

7.4Les fonctionslogarithmesetexponentiellesde basea...................................................page 408Les fonctions puissances................................................................................page 43

9Les théorèmes de croissances comparées..............................................................page 44

10Trigonométrie hyperbolique..........................................................................page 45

10.1Les fonctions hyperboliques ........................................................................... page 45

10.1.1 Exercice d"introduction ..........................................................................page 45

10.1.2 Définition des fonctionssinus hyperboliqueetcosinus hyperbolique................................page 46

10.1.3 Etude conjointe de ch et sh ...................................................................... page46

10.1.4 Formulaire de trigonométrie hyperbolique ........................................................page 47

10.1.5 La fonctiontangente hyperbolique................................................................page 49

10.2Les fonctions hyperboliques réciproques................................................................page 51

10.2.1 La fonctionargument sinus hyperbolique......................................................... page 51

10.2.2 La fonctionargument cosinus hyperbolique....................................................... page 53

10.2.3 La fonctionargument tangente hyperbolique......................................................page 54

11La fonction valeur absolue............................................................................page 55

11.1Définition et propriétés de la valeur absolue............................................................page55

11.2Tableaux de valeurs absolues. Fonctions affines par morceauxet continues..............................page 57

11.3Minimum et maximum d"un couple de réels ............................................................page 58

11.4La fonction " signe »...................................................................................page 58

12La fonction partie entière.............................................................................page 59

12.1Définition et propriétés de lapartie entière.............................................................page 59

12.2La fonctionpartie décimale............................................................................ page 61

c ?Jean-Louis Rouget, 2009. Tous droits réservés.1 http ://www.maths-france.fr

1 Compléments sur la réciproque d"une bijection1.1 Rappels.On rappelle que sifest une application d"un ensembleEvers un ensembleF,

fest bijective??y?F,?!x?E/ y=f(x).

Dans ce cas, on peut définir la réciproquef-1def. Elle est entièrement caractérisée par

?(x,y)?E×F, y=f(x)?x=f-1(y). La réciproque defest également entièrement caractérisée par les égalités f-1◦f=IdEetf◦f-1=IdF, ce qui s"écrit encore ?x?E,(f-1(f(x)) =xet?y?F, f(f-1(y)) =y.

1.2 Cas particulier des applications deRdansRdérivables

y=x y=f(x) y=f -1 (x) x

0f(x0)

x ?0=f(x0)f -1(x?0) =x0 IJ Ci-contre, nous avons tracé le graphe d"une fonctionf, réalisant une bijection d"un intervalleIsur un intervalleJ, et le graphe de sa réciproque. Le graphe def-1est l"ensemble des points de coordonnées(x?,f-1(x?)) oùx?décrit l"intervalleJ(dans cette phrase, l"intervalleJest pensé sur l"axe des abscisses). On posex0=f-1(x?0)ou, ce qui revient au même,x?0=f(x),x0étant lui un réel de l"intervalleI. On passe du point(x0,f(x0)) = (f-1(x?0),x?0) au point(x?0,f-1(x?0))en échangeant les deux coordonnées. Géométrique- ment, les deux points(x0,f(x0))et(x?0,f-1(x?0))sont symétriques l"un de l"autre par rapport à la droite d"équationy=x. Ainsi, le graphe def-1est le symétrique du graphe def par rapport à la droite d"équationy=x. On démontrera dans le cours d"analyse les résultats suivants.

Théorème 1.Soitfune application définie sur un intervalleIdeRà valeurs dansRet dérivable surI. Si la dérivée de

fest strictement positive surI(ou strictement négative surI), alorsfréalise une bijection deIsurf(I) =Jqui est un

intervalle de même nature queI(ouvert, semi-ouvert, fermé). Sa réciproquef-1est alors dérivable surJet,

(f-1)?=1 f?◦f-1, ou, ce qui revient au même, ?x?J,(f-1)?(x) =1 f?(f-1(x)).

fetf-1sont toutes deux strictement monotones surIetJrespectivement, et ont même sens de variations surIetJ

respectivement.

L"égalité(f-1)?(x0) =1f?(f-1(x0))est lisible sur le graphique : par symétrie, le coefficient directeur de la tangente au

graphe def-1au point(x?0,f-1(x?0))est l"inverse du coefficient directeur de la tangente au graphe defau point(x0,f(x0)).

En effet, soientM(a,b)etN(c,d)deux points d"abscisses et d"ordonnées distinctes. Leurs symétriques par rapport à la

droite d"équationy=xsont les pointsM?(b,a)etN?(d,c). Le coefficient directeur de la droite(M?N?)est

y

N?-yM?

xN?-xM?=c-ad-b=?d-bc-a? -1 =?yN-yMxN-xM? -1

et est donc l"inverse du coefficient directeur de la droite(MN). On applique alors ce travail aux pointsM0(x0,f(x0))et

M(x,f(x))puis on fait tendrexversx0et on obtient le résultat. c ?Jean-Louis Rouget, 2009. Tous droits réservés.2 http ://www.maths-france.fr

2 Les fonctionsx?→xn,n?N

2.1 Etude générale

Pourn?Netxréel, on posefn(x) =xn. Quandn=0, la fonctionfnest la fonction constantex?→1et quandn=1,

la fonctionfnest la fonctionx?→x. Sinon Théorème 2.Soitn?N\ {0,1}. La fonctionfn;x?→xnest dérivable surRet?x?R, f?n(x) =nxn-1.

Démonstration.Soitx0?R. Pour tout réel non nulh, on a d"après la formule du binôme deNewton

f n(x0+h) -fn(x0) h=1h x n

0+nhxn-1

0+ n 2! x n-2

0h2+...

n n-1! x

0hn-1+hn!

-xn0! =nxn-1 0+ n 2! x n-2

0h+...

n n-1! x

0hn-2+hn-1.

et quandhtend vers0, cette dernière expression tend versnxn-1

0. On peut s"y prendre autrement : pourx?=x0

f n(x) -fn(x0)

0+xn-1

0)x-x0

=xn-1+xn-2x0+xn-3x20+...+xxn-2

0+xn-1

0. et quandxtend versx0, cette expression tend versxn-1

0+xn-1

0+...+xn-1

0? n=nxn-1 0. o On a alors immédiatement le théorème suivant :

Théorème 3.Soitn?N\ {0,1}.

•Quandnest pair, la fonctionx?→xnest paire, continue et dérivable surR, strictement décroissante sur] -∞,0]et

strictement croissante sur[0,+∞[.

•Quandnest impair, la fonctionx?→xnest impaire, continue et dérivable surR, strictement croissante surR.

Représentation graphique des fonctionsx?→xn,n?N\ {0,1}. n=2p,p?N? y=x 2p n=2p+1,p?N? y=x 2p+1

Etudions maintenant les positions relatives des graphesCndes fonctionsfnsurR+. Soientn?Netx?[0,+∞[.

f n+1(x) -fn(x) =xn+1-xn=xn(x-1).

Six=0oux=1, on afn+1(x) =fn(x). Toutes les courbesCnont en commun les points de coordonnées(0,0)et(1,1).

Six?]0,1[, on axn(x-1)< 0et doncfn+1(x)< fn(x). Sur]0,1[, la courbeCn+1est strictement au-dessous de la courbe

C n.

Six?]1,+∞[, on axn(x-1)> 0et doncfn+1(x)> fn(x). Sur]1,+∞[, la courbeCn+1est strictement au-dessus de la

courbeCn. c ?Jean-Louis Rouget, 2009. Tous droits réservés.3 http ://www.maths-france.fr

•Six?]0,1[,1 > x > x2> x3> x4> ...,

•Six?]1,+∞[,1 < x < x2< x3< x4< ....

Dit autrement :

•Six?]0,1[, la suite géométrique(xn)n?Nest strictement décroissante, •Six?]1,+∞[, la suite géométrique(xn)n?Nest strictement croissante. Représentation graphique des fonctionsx?→xn,n?{0,1,2,3,4}. 1 1y=1 y=x y=x2 y=x3 y=x4

2.2 Les fonctions du second degréx?→ax2+bx+c,a?=0

Forme canonique.Soienta,betctrois réels tels quea?=0. Pour tout réelx, en posantΔ=b2-4ac, on a

ax

2+bx+c=a?

x 2+b ax+ca? =a? x+b2a? 2 -b24a2+ca? =a? x+b2a? 2 -b2-4ac4a2? =a? x+b 2a? 2 -Δ4aoùΔ=b2-4ac.

Représentation graphique.On se donne un repère orthonorméR= (O,-→i ,-→j)et on noteCla courbe représentative

de la fonctionf:x?→ax2+bx+cc"est-à-dire la courbe d"équationy=ax2+bx+cou encore y=a? x+b 2a? 2 -Δ4a(?)dans le repèreR. -b/2a -Δ/4ay x O y=ax

2+bx+c

y ?=ax ?2 O?x?y On cherche alors un repère mieux adapté à cette courbe. Pour cela, on prend comme nouvelle origine le pointO?? -b

2a,-Δ4a?

puis comme nouveau repère le repèreR?= (O?,-→i ,-→j). Les formules de changement de repère s"écrivent ?x= -bquotesdbs_dbs29.pdfusesText_35