[PDF] [PDF] Matrice et application linéaire - Exo7 - Cours de mathématiques

Nous allons voir que dans le cas des espaces vectoriels de dimension finie, Soit E un -espace vectoriel et soit {v1, , vp} une famille finie de vecteurs de E Le  



Previous PDF Next PDF





[PDF] Matrice et application linéaire - Exo7 - Cours de mathématiques

Nous allons voir que dans le cas des espaces vectoriels de dimension finie, Soit E un -espace vectoriel et soit {v1, , vp} une famille finie de vecteurs de E Le  



[PDF] Espaces vectoriels de dimension finie - Exo7 - Exercices de

Exercice 3 ** Soit K un sous-corps de C et E un K-espace vectoriel de dimension finie Soient f et g deux endomorphismes de E vérifiant E = Kerf +Kerg = Imf +Img  



[PDF] Topologie - Exo7 - Exercices de mathématiques

Soit u une suite bornée d'un espace vectoriel normé de dimension finie ayant une unique valeur d'adhérence Montrer que la suite u converge Correction ▽



[PDF] Espaces vectoriels de dimension finie - Exo7 - Exercices de

Exercice 6 Soit E est un espace vectoriel de dimension finie et F et G deux sous- espaces vectoriels de E Montrer que : dim(F +G) = dimF +dimG−dim(F ∩G)



[PDF] Dualité - Exo7 - Exercices de mathématiques

Exercice 4 *** 1 Soient n ∈ N∗ puis ϕ1, , ϕn et ϕ n+1 formes linéaires sur un K-espace vectoriel E de dimension finie 



[PDF] QCM DE MATHÉMATIQUES - LILLE - PARTIE 2 - Exo7

Soit E et F deux -espaces vectoriels de dimensions finies et f une application Soit E un -espace vectoriel de dimension finie et f un endomorphisme de E



[PDF] Produit scalaire, espaces euclidiens - Exo7 - Exercices de

Exercice 2 *** Soit E un R espace vectoriel de dimension finie Soit une norme sur E vérifiant l'identité du parallè- logramme, c'est-à-dire : ∀(x,y) ∈ E2, x + 



[PDF] Dimension finie - Exo7 - Cours de mathématiques

Pour des vecteurs de n, décider si une famille {v1, , vp} est libre ou liée revient à résoudre un système linéaire Exemple 1 Dans le -espace vectoriel 3, 



[PDF] Diagonalisation - Exo7 - Cours de mathématiques

Soit f : E → E un endomorphisme d'un -espace vectoriel E de dimension finie n Soit A ∈ Mn() la matrice de f dans une base Le polynôme caractéristique de f est 



[PDF] Exercices de mathématiques Table des matières

http://exo7 emath fr/search php Ils accompagnent teur de l'exercice, est le même que sur le site exo7 et c'est aussi le numéro utilisé dans le Dans l' application du théorème des accroissements finis à la fonction f(x) = αx2 + βx Soit E un espace vectoriel de dimension n et f une application linéaire de E dans lui-même

[PDF] Applications linéaires - Exo7 - Emathfr

[PDF] Produit scalaire, espaces euclidiens - Exo7 - Emathfr

[PDF] Espaces vectoriels - Exo7 - Emathfr

[PDF] ESPACES VECTORIELS Résumé de cours d 'alg`ebre linéaire L1 de

[PDF] FTV-BAC-ANG-L5 - copie

[PDF] #8594 Quels sont les principaux espaces productifs français ? Comment

[PDF] Les espaces productifs : les espaces touristiques

[PDF] Espaces vectoriels - Exo7

[PDF] VOYAGEZ TRANQUILLE Guide des formalités douanières - Douane

[PDF] Espagnol CE1 - Académie en ligne

[PDF] evaluation d 'espagnol fin cycle 3 - Académie de Toulouse

[PDF] Guide de Conversation pour parler Espagnol - Vert Costa Rica

[PDF] Calendrier universitaire-ESPE- M1xlsx

[PDF] Campus de Bonneuil-sur-Marne - ESPE de Créteil - UPEC

[PDF] Chartres - Université d 'Orléans

Matrices et

Ce chapitre est l"aboutissement de toutes les notions d"algèbre linéaire vues jusqu"ici : espaces vectoriels, dimension,applications linéaires, matrices. Nous allons voir que dans le cas des espaces vectoriels de dimension finie, l"étude des

applications linéaires se ramène à l"étude des matrices, ce qui facilite les calculs.

1. Rang d"une famille de vecteurs

Le rang d"une famille de vecteurs est la dimension du plus petit sous-espace vectoriel contenant tous ces vecteurs.

1.1. Définition

SoientEunK-espace vectoriel etfv1,...,vpgune famille finie de vecteurs deE. Le sous-espace vectorielVect(v1,...,vp)

engendré parfv1,...,vpgétant de dimension finie, on peut donc donner la définition suivante :Définition 1(Rang d"une famille finie de vecteurs).

SoitEunK-espace vectoriel et soitfv1,...,vpgune famille finie de vecteurs deE. Lerangde la famillefv1,...,vpg

est la dimension du sous-espace vectoriel Vect(v1,...,vp)engendré par les vecteursv1,...,vp. Autrement dit :rg(v1,...,vp) =dimVect(v1,...,vp)

Calculer le rang d"une famille de vecteurs n"est pas toujours évident, cependant il y a des inégalités qui découlent

directement de la définition.Proposition 1. Soient E unK-espace vectoriel etfv1,...,vpgune famille de p vecteurs de E. Alors :

1.06rg(v1,...,vp)6p : le rang est inférieur ou égal au nombre d"éléments dans la famille.

2.

SiEest de dimension finie alorsrg(v1,...,vp)6dimE: le rang est inférieur ou égal à la dimension de l"espace

ambiant E.Remarque. Le rang d"une famille vaut 0 si et seulement si tous les vecteurs sont nuls. Le rang d"une famillefv1,...,vpgvautpsi et seulement si la famillefv1,...,vpgest libre.

Exemple 1.

MATRICES ET APPLICATIONS LINÉAIRES1. RANG D"UNE FAMILLE DE VECTEURS2 Quel est le rang de la famillefv1,v2,v3gsuivante dans l"espace vectorielR4? v 1=0 B B@1 0 1 01 C

CAv2=0

B B@0 1 1 11 C

CAv3=0

B B@1 1 0 11 C CA

Ce sont des vecteurs deR4donc rg(v1,v2,v3)64.

Mais comme il n"y a que 3 vecteurs alors rg(v1,v2,v3)63.

Le vecteurv1est non nul donc rg(v1,v2,v3)>1.

Il est clair quev1etv2sont linéairement indépendants donc rg(v1,v2,v3)>rg(v1,v2) =2.Il reste donc à déterminer si le rang vaut2ou3. On cherche si la famillefv1,v2,v3gest libre ou liée en résolvant le

système linéaire1v1+2v2+3v3=0. On trouvev1v2+v3=0. La famille est donc liée. AinsiVect(v1,v2,v3) =

Vect(v1,v2), donc rg(v1,v2,v3) =dimVect(v1,v2,v3) =2.

1.2. Rang d"une matrice

Une matrice peut être vue comme une juxtaposition de vecteurs colonnes.Définition 2. On définit lerangd"une matrice comme étant le rang de ses vecteurs colonnes.Exemple 2.

Le rang de la matrice

A=1 212

0

2 41 0

2M2,4(K)

est par définition le rang de la famille de vecteurs deK2: v 1 =12,v2=24,v3=

€12

1Š ,v4 =00ª. Tous ces vecteurs sont colinéaires àv1, donc le rang de la famillefv1,v2,v3,v4gest 1 et ainsi rgA=1.

Réciproquement, on se donne une famille depvecteursfv1,...,vpgd"un espace vectorielEde dimensionn. Fixons

une baseB=fe1,...,engdeE. Chaque vecteurvjse décompose dans la baseB:vj=a1je1++aijei++anjen, ce que l"on notevj= 0 B B@a 1j ...aij ...anj1 C CA B . En juxtaposant ces vecteurs colonnes, on obtient une matriceA2Mn,p(K). Le rang de la famillefv1,...,vpgest égal au rang de la matriceA.Définition 3.

On dit qu"une matrice estéchelonnéepar rapport aux colonnes si le nombre de zéros commençant une colonne

croît strictement colonne après colonne, jusqu"à ce qu"il ne reste plus que des zéros. Autrement dit, la matrice

transposée est échelonnée par rapport aux lignes.

Voici un exemple d"une matrice échelonnée par colonnes; lesdésignent des coefficients quelconques, les+des

coefficients non nuls :0 B

BBBBB@+0 0 0 0 0

0 0 0 0 0

+0 0 0 0 +0 0 0 0 0 0 +0 01 C

CCCCCA

Le rang d"une matrice échelonnée est très simple à calculer.Proposition 2. Le rang d"une matrice échelonnée par colonnes est égal au nombre de colonnes non nulles.

Par exemple, dans la matrice échelonnée donnée en exemple ci-dessus,4colonnes sur6sont non nulles, donc le rang

de cette matrice est 4.

La preuve de cette proposition consiste à remarquer que les vecteurs colonnes non nuls sont linéairement indépendants,

ce qui au vu de la forme échelonnée de la matrice est facile. MATRICES ET APPLICATIONS LINÉAIRES1. RANG D"UNE FAMILLE DE VECTEURS3

1.3. Opérations conservant le rangProposition 3.Le rang d"une matrice ayant les colonnesC1,C2,...,Cpn"est pas modifié par les trois opérations élémentaires suivantes

sur les vecteurs : 1. C i Ciavec6=0: on peut multiplier une colonne par un scalaire non nul. 2. C i Ci+Cjavec2K(et j6=i) : on peut ajouter à la colonne Ciun multiple d"une autre colonne Cj. 3. C i$Cj: on peut échanger deux colonnes.Plus généralement, l"opérationCi Ci+P i6=jjCjconserve le rang de la matrice.

On a même un résultat plus fort, comme vous le verrez dans la preuve : l"espace vectoriel engendré par les vecteurs

colonnes est conservé par ces opérations. Démonstration.Le premier et troisième point de la proposition sont faciles.

Poursimplifierl"écriture de la démonstration du deuxième point,montrons que l"opérationC1 C1+C2ne change pas

le rang. Notonsvile vecteur correspondant à la colonneCid"une matriceA. L"opération sur les colonnesC1 C1+C2

change la matriceAen une matriceA0dont les vecteurs colonnes sont :v1+v2,v2,v3,...,vp.

Il s"agit de montrer que les sous-espacesF=Vect(v1,v2,...,vp)etG=Vect(v1+v2,v2,v3,...,vp)ont la même

dimension. Nous allons montrer qu"ils sont égaux! Tout générateur deGest une combinaison linéaire desvi, doncGF.

Pour montrer queFG, il suffit de montrerv1est combinaison linéaire des générateurs deG, ce qui s"écrit :

v1= (v1+v2)v2.

Conclusion :F=Get donc dimF=dimG.Méthodologie.Comment calculer le rang d"une matrice ou d"un système de vecteurs?

Il s"agit d"appliquer la méthode de Gauss sur les colonnes de la matriceA(considérée comme une juxtaposition

de vecteurs colonnes). Le principe de la méthode de Gauss affirme que par les opérations élémentairesCi Ci,

Ci Ci+Cj,Ci$Cj, on transforme la matriceAen une matrice échelonnée par rapport aux colonnes. Le rang de

la matrice est alors le nombre de colonnes non nulles.

Remarque : la méthode de Gauss classique concerne les opérations sur les lignes et aboutit à une matrice échelonnée

par rapport aux lignes. Les opérations sur les colonnes deAcorrespondent aux opérations sur les lignes de la matrice

transposéeAT.

1.4. Exemples

Exemple 3.

Quel est le rang de la famille des 5 vecteurs suivants deR4? v 1=0 B B@1 1 1 11 C

CAv2=0

B B@1 2 0 11 C

CAv3=0

B B@3 2 1 31
C

CAv4=0

B B@3 5 0 11 C

CAv5=0

B B@3 8 1 11 C CA On est ramené à calculer le rang de la matrice : 0 B

B@11 3 3 3

1 2 2 5 8

1 01 0 1

1 131 11

C CA En faisant les opérationsC2 C2+C1,C3 C33C1,C4 C43C1,C5 C53C1, on obtient des zéros sur la première ligne à droite du premier pivot :0 B

B@11 3 3 3

1 2 2 5 8

1 01 0 1

1 131 11

C CA0 B

B@1 0 0 0 0

1 31 2 5

1 1432

1 26421

C CA

MATRICES ET APPLICATIONS LINÉAIRES1. RANG D"UNE FAMILLE DE VECTEURS4On échangeC2etC3par l"opérationC2$C3pour avoir le coefficient1en position de pivot et ainsi éviter d"introduire

des fractions.0 B

B@1 0 0 0 0

1 31 2 5

1 1432

1 26421

C CA0 B

B@1 0 0 0 0

11 3 2 5

14 132

16 2421

C CA

En faisant les opérationsC3 C3+3C2,C4 C4+2C2etC5 C5+5C2, on obtient des zéros à droite de ce deuxième

pivot :0 B

B@1 0 0 0 0

11 3 2 5

14 132

16 2421

C CA0 B

B@1 0 0 0 0

11 0 0 0

14111122

161616321

C CA

Enfin, en faisant les opérationsC4 C4C3etC5 C52C3, on obtient une matrice échelonnée par colonnes :0

B

B@1 0 0 0 0

11 0 0 0

14111122

161616321

C CA0 B

B@1 0 0 0 0

11 0 0 0

1411 0 0

1616 0 01

C CA

Il y a 3 colonnes non nulles : on en déduit que le rang de la famille de vecteursfv1,v2,v3,v4,v5gest 3.

En fait, nous avons même démontré que

1111‹

0146‹

001116‹‹

Exemple 4.

Considérons les trois vecteurs suivants dansR5:v1= (1,2,1,2,0),v2= (1,0,1,4,4)etv3= (1,1,1,0,0). Montrons

que la famillefv1,v2,v3gest libre dansR5. Pour cela, calculons le rang de cette famille de vecteurs ou, ce qui revient

au même, celui de la matrice suivante :0 B

BBB@1 1 1

2 0 1 1 1 1 2 4 0

0 4 01

C CCCA. Par des opérations élémentaires sur les colonnes, on obtient : 0 B

BBB@1 1 1

2 0 1 1 1 1 2 4 0

0 4 01

C CCCA0 B

BBB@1 0 0

221
1 0 0 2 22

0 4 01

C CCCA0 B

BBB@1 0 0

211
quotesdbs_dbs22.pdfusesText_28