[PDF] [PDF] Cours de Statistiques inférentielles

Nous allons chercher à faire l'inverse : l'inférence statistique consiste à induire les connues d'une population à partir d'un échantillon issu de cette population Exemple : pour estimer l'espérance E(X) de la loi de X, un estimateur naturel est la Il faut bien comprendre que les tests d'hypothèse ne permettent pas 



Previous PDF Next PDF





[PDF] Cours 5: Inférences: Estimation, Echantillonnage et Tests - Institut de

Xn La variance empirique S2 n Cas général Cas des échantillons Gaussiens Clément Rau Cours 5: Inférences: Estimation, Echantillonnage et Tests 



[PDF] Cours de Statistiques inférentielles

Nous allons chercher à faire l'inverse : l'inférence statistique consiste à induire les connues d'une population à partir d'un échantillon issu de cette population Exemple : pour estimer l'espérance E(X) de la loi de X, un estimateur naturel est la Il faut bien comprendre que les tests d'hypothèse ne permettent pas 



[PDF] D - Inférence Statistique – Estimation et Tests dhypothèses

Echantillon : Sous ensemble de la population Un échantillon représentatif est un sous ensemble choisi au hasard dans la population La moyenne X et 



[PDF] Échantillonnages et estimations

Chapitre V: Théorie des tests 2 «Eléments de statistique d'aide à la décision: cours et exercices résolus» par M ELHAFIDI et D TOUIJAR; • «Théorie des sondage: échantillonnage et estimation La problématique de l'inférence statistique



[PDF] Cours de Statistique Infe19 erentielle - Laboratoire ERIC

Application : estimation bayésienne de la moyenne d'une loi normale de variance La problématique de l'inférence statistique consiste, `a partir d'un échantillon de Dans ce cours, nous classons les tests en fonction de leur fonctionnalité :



[PDF] Cours 4: Statistique inférentielle Échantillonnage

destructrices (ex : tests en vieillissement accélérés) ➢ Sondage : Evaluation de ces méthodes : le système d'échantillonnage sera jugé d'après la qualité des  



[PDF] Cours de statistique III - FSJES-Agdal

Cours Echantillonnage et Estimation La notion de distribution d' échantillonnage est à la base des méthodes d'inférence statistique dont les deux principales 



[PDF] Inférence Statistique - HAL Paris 8

12 jan 2017 · vivement conseillée surtout dans les parties du cours que vous avez du Pour les variables numériques, la distribution d'échantillonnage est D'un point de vue statistique, l'interprétation du test dépend du type Quarante sujets âgés de cinquante à quatre-vingt-neuf ans ont bénéficié d'une évaluation



[PDF] Estimation et tests statistiques, TD 5 Solutions

Le niveau de confiance est donc 0 516 Exercice 3 – On veut étudier la proportion p de gens qui vont au cinéma chaque mois On prend donc un échantillon de 



[PDF] Linférence statistique - Université de Moncton

Page 1 L'inférence statistique Donald Long Centre de recherche et de développement en éducation quand les estimations ne varient pas d'un échantillon à l'autre analyses statistiques en cours d'expérience et à la toute fin devraient au test d'anglais est-elle significativement plus élevée que la moyenne de 69

[PDF] statistique : estimation - Institut de Mathématiques de Bordeaux

[PDF] Estimer ou mesurer une longueur Connaître les différentes unités et

[PDF] LA ESTIMULACION TEMPRANA - OEI

[PDF] Avis aux Candidats ? l 'accès ? l 'ESTM admis sur les listes d 'attentes

[PDF] Avis d 'inscription ? l 'internat ESTO 2016/2017 - Ecole Supérieure de

[PDF] La lettre de l - ESTP Paris

[PDF] Nouveauté Filière Apprentissage Européen - EDHEC Business School

[PDF] La pêche ? pied Les animaux de l 'estran rocheux ou sableux

[PDF] Regionalización Sanitaria - Colegio de Enfermeros de Perú

[PDF] Images correspondant ? estrategias de h

[PDF] Medios didacticos para la eneñanza de la geografía

[PDF] Medios didacticos para la eneñanza de la geografía

[PDF] Estrategias docentes para la enseñanza de la geografía en el curso

[PDF] Estructura de un periódico - INTEF - Ministerio de Educación

[PDF] Estructura General para la Presentación de Proyectos de Inversión y

[PDF] Cours de Statistiques inférentielles

Licence 2-S4 SI-MASS

Année 2018Cours de Statistiques inférentielles

Pierre DUSART

2

Chapitre1Lois statistiques

1.1 Introduction

Nous allons voir que si une variable aléatoire suit une certaine loi, alors ses réalisations (sous forme

d"échantillons) sont encadrées avec des probabilités de réalisation. Par exemple, lorsque l"on a une énorme

urne avec une proportionpde boules blanches alors le nombre de boules blanches tirées sur un échan-

tillon de taillenest parfaitement défini. En pratique, la fréquence observée varie autour depavec des

probabilités fortes autour depet plus faibles lorsqu"on s"éloigne dep.

Nous allons chercher à faire l"inverse : l"inférence statistique consiste à induire les caractéristiques in-

connues d"une population à partir d"un échantillon issu de cette population. Les caractéristiques de

l"échantillon, une fois connues, reflètent avec une certaine marge d"erreur possible celles de la population.

1.1.1 Fonction de répartition

La densité de probabilitép(x)ou la fonction de répartitionF(x)définissent la loi de probabilité d"une

variable aléatoire continueX. Elles donnent lieu aux représentations graphiques suivantes :Figure1.1 - fonction répartition

La fonction de distribution cumuléeF(x)exprime la probabilité queXn"excède pas la valeurx:

F(x) =P(Xx):

De même, la probabilité que X soit entreaetb(b > a) vaut

P(a < X < b) =F(b)F(a):

4CHAPITRE 1. LOIS STATISTIQUES1.1.2 Grandeurs observées sur les échantillons

L"espéranceE(X)d"une variable aléatoire discrèteXest donnée par la formule

E(X) =X

ix iP(xi): L"espérance est également appelée moyenne et notée dans ce casX. Sa variance2Xest l"espérance des carrés des écarts avec la moyenne :

2X=E[(XX)2] =X

i(xiX)2P(xi) =X ix

2iP(xi)2X:

Son écart-typeXest la racine positive de la variance.

1.2 Lois usuelles

1.2.1 Loi normale ou loi de Gauss

Une variable aléatoire réelleXsuit une loi normale (ou loi gaussienne, loi de Laplace-Gauss) d"espérance

et d"écart type(nombre strictement positif, car il s"agit de la racine carrée de la variance2) si cette

variable aléatoire réelleXadmet pour densité de probabilité la fonctionp(x)définie, pour tout nombre

réelx, par : p(x) =1 p2e12 (x )2: Une telle variable aléatoire est alors dite variable gaussienne.

Une loi normale sera notée de la manière suivanteN(;)car elle dépend de deux paramètres(la

moyenne) et(l"écart-type). Ainsi si une variable aléatoireXsuitN(;)alors

E(X) =etV(X) =2:

Lorsque la moyennevaut 0, et l"écart-type vaut 1, la loi sera notéeN(0;1)et sera appelée loi normale

standard. Sa fonction caractéristique vautet2=2. Seule la loiN(0;1)est tabulée car les autres lois (c"est-

à-dire avec d"autres paramètres) se déduise de celle-ci à l"aide du théorème suivant : SiYsuitN(;)

alorsZ=Y suitN(0;1). On notela fonction de répartition de la loi normale centrée réduite : (x) =P(Z < x) avecZune variable aléatoire suivantN(0;1).

Propriétés et Exemples :(x) = 1(x),

(0) = 0:5;(1:645)0:95;(1:960)0:9750

Pourjxj<2, une approximation depeut être utilisée; il s"agit de son développement de Taylor à

l"ordre 5 au voisinage de 0 : (x)0:5 +1p2 xx36 +x540

Inversement, à partir d"une probabilité, on peut chercher la borne pour laquelle cette probabilité est

effective. Cours Proba-Stat / Pierre DUSART5Notation : on noteraz=2le nombre pour lequel

P(Z > z=2) ==2

lorsque la variable aléatoire suit la loi normale standard.risque0:010:020:050:10valeur critiquez=22:582:331:961:645coefficient de sécuritéc99%98%95%90%

A l"aide des propriétés de la loi normale standard, on remarque que le nombrez=2vérifie également

P(Z < z=2) =

P(Z

P(z=2< Z < z=2) =

P(jZj> z=2) =

La somme de deux variables gaussiennes indépendantes est elle-même une variable gaussienne (stabilité) :

SoientXetYdeux variables aléatoires indépendantes suivant respectivement les loisN(1;1)et N(2;2). Alors, la variable aléatoireX+Ysuit la loi normaleN(1+2;p

21+22).

1.2.2 Loi du2(khi-deux)

Définition 1SoitZ1;Z2;:::;Zune suite de variables aléatoires indépendantes de même loiN(0;1).

Alors la variable aléatoireP

i=1Z2isuit une loi appeléeloi du Khi-deuxàdegrés de liberté, notée 2(). Proposition 1.2.11. Sa fonction caractéristique est(12it)=2.

2. La densité de la loi du2()est

f (x) = 12 =2(=2)x=21ex=2pourx >0

0sinon.

oùest la fonction Gamma d"Euler définie par(r) =R1

0xr1exdx.

3. L"espérance de la loi du2()est égale au nombrede degrés de liberté et sa variance est2.

4. La somme de deux variables aléatoires indépendantes suivant respectivement2(1)et2(2)suit

aussi une loi du2avec1+2degrés de liberté. PreuveCalculons la fonction caractéristique deZ2lorsqueZsuitN(0;1). '(t) =E(eitZ2) =Z 1 1 eitz21p2ez2=2dz 1p2Z 1 1 e12 (12it)z2dz 1p2Z 1 1e 12 u2(12it)1=2dten posantu= (12it)1=2z '(t) = (12it)1=2 Maintenant pour la somme devariablesZ2iindépendantes, on a '(t) = (12it)=2:

6CHAPITRE 1. LOIS STATISTIQUESMontrons maintenant que la fonction de densité est correcte. Pour cela, calculons la fonction caractéris-

tique à partir de la densité : '(t) =E(eitx) =Z +1 0 eitx12 =2(=2)x=21ex=2dx 12 =2(=2)Z +1 0 x(1=2it)xdx 12 =2(=2)1(1=2it)(1=2it)=21Z +1 0 u=21euduen posantu= (1=2it)x 12 =2(=2)1(1=2it)=2Z +1 0 u=21eudu |{z} =(=2) '(t) =1(12it)=2

Calculons maintenant l"espérance et la variance. Selon la définition de la loi du2, chaque variable

Z isuit la loi normale centrée réduite. AinsiE(Z2i) =V ar(Zi) = 1etE(P i=1Z2i) =. De même, V(Zir) =E(Z4i)(E(Z2i))2=41:On sait que pour une loi normale centrée réduite4= 3donc

V ar(Z2i) = 2etV ar(P

i=1Z2i) = 2: La dernière proposition est évidente de par la définition de la loi du2.

Fonction inverse: on peut trouver une tabulation de la fonction réciproque de la fonction de répartition

de cette loi dans une table (en annexe) ou sur un logiciel tableur :

7!2;(FonctionKHIDEUX.inverse(;));

c"est-à-dire la valeur de2;telle queP(2()> 2;) =. Exemple : Pour= 0:990et= 5,2= 0:554 =20:99;5.Figure1.2 - fonction2inverse

1.2.3 Loi de Student

Définition 2SoientZetQdeux variables aléatoires indépendantes telles queZsuitN(0;1)etQsuit

2(). Alors la variable aléatoire

T=ZpQ=

suit une loi appeléeloi de Studentàdegrés de liberté, notéeSt().

Cours Proba-Stat / Pierre DUSART7Proposition 1.2.21. La densité de la loi de la loi de Student àdegrés de liberté est

f(x) =1p +12 )(=2)1(1 +x2=)+12

2. L"espérance n"est pas définie pour= 1et vaut 0 si2. Sa variance n"existe pas pour2et

vaut=(2)pour3.

3. La loi de Student converge en loi vers la loi normale centrée réduite.

Remarque : pour= 1, la loi de Student s"appelle loi de Cauchy, ou loi de Lorentz.

1.2.4 Loi de Fisher-Snedecor

Définition 3SoientQ1etQ2deux variables aléatoires indépendantes telles queQ1suit2(1)etQ2 suit2(2)alors la variable aléatoire

F=Q1=1Q

2=2 suit une loi de Fisher-Snedecor à(1;2)degrés de liberté, notéeF(1;2).

Proposition 1.2.3La densité de la loiF(1;2)est

f(x) =(1+22 )(1=2)(2=2) 1 2

1=2x1=21(1 +

1 2x) 1+22 six >0 (0sinon):

Son espérance n"existe que si23et vaut2

22. Sa variance n"existe que si25et vaut22

2(1+22)

1(22)2(24).

Proposition 1.2.41. SiFsuit une loi de FisherF(1;2)alors1F suit une loi de FisherF(2;1).

2. SiTsuit une loi de Student àdegrés de liberté alorsT2suit une loi de FisherF(1;).

1.2.5 Fonctions inverses et TableurLoiNotationVariableFct RépartitionV. critiqueFonction inverse

GaussN(0;1)Zloi.normale.standard(z)z

loi.normale.standard.inverse(1)Khi-Deux 2()K

2khideux(k;;1)

;1;2inverse.Loi.f(;1;2))

8CHAPITRE 1. LOIS STATISTIQUES

Chapitre2Convergences

2.1 Convergence en probabilité

2.1.1 Inégalités utiles

Inégalité de Markov simplifiée

SoitYune v.a.r.,gune fonction croissante et positive ou nulle sur l"ensemble des réels, vérifiantg(a)>0,

alors

8a >0;P(Ya)E(g(Y))g(a):

Preuve

E(g(Y)) =Z

g(y)f(y)dy=Z Y Yag(y)f(y)dy

Z

Yag(y)f(y)dycargest positive ou nulle

g(a)Z

Yaf(y)dycargest croissante

=g(a)P(Ya)

AinsiE(g(Y))g(a)P(Ya).

Rappel : Inégalité de Bienaymé-Chebyshev

SoitXune variable aléatoire admettant une espéranceE(X)et de variance finie2(l"hypothèse de variance finie garantit l"existence de l"espérance).

L"inégalité de Bienaymé-Chebychev s"énonce de la façon suivante : pour tout réel"strictement positif,

P(jXE(X)j ")2"

2: PreuveVoir Cours S3 ou prendreY=jXE(X)j,a="etg(t) =t2dans l"inégalité de Markov.

10CHAPITRE 2. CONVERGENCES2.1.2 Convergence en probabilité

Définition 4 (Convergence en probabilité)On considère une suite(Xn)d"une v.a. définie sur

Xune autre v.a. définie sur

On dit que la suite(Xn)converge en probabilité vers une constante réelle`si

8" >0;limn!1P(jXn`j> ") = 0:

On dit que la suite(Xn)converge en probabilité versXsi

8" >0;limn!1P(jXnXj> ") = 0:

Exemple de la loi binomiale :On réalisenexpériences indépendantes et on suppose que lors de

chacune de ces expériences, la probabilité d"un événement appelé "succès" estp. SoitSnle nombre de

succès obtenus lors de cesnexpériences. La variance aléatoireSn, somme denvariables de Bernoulli

indépendantes, de même paramètrep, suit une loi binomiale :Sn,! B(n;p). On s"intéresse alors à la variable aléatoire Snn , proportion de succès surnexpériences, a donc pour espéranceE(Snn ) =pet pour varianceV(Snn ) =1n

2V(Sn) =p(1p)n

. Commep(1p)atteint son maximum

lorsquep= 1=2, on a ainsip(1p)1=4. En appliquant l"inégalité de Bienaymé-Chebyshev, il vient

P(jSn=npj ")p(1p)n"

214n"2:

Ainsi pour tout" >0, il existe >0(plus précisément >14n"2) tel queP(jSn=npj ")< ou encorelimn!1P(jSn=npj ") = 0. La variable aléatoireSnn converge en probabilité versp.

Théorème 2.1.1Soit(Xn)une suite de variables aléatoires sur le même espace probabilisé(

;P)ad- mettant des espérances et des variances vérifiant lim n!1E(Xn) =`etlimn!1V(Xn) = 0; alors les(Xn)convergent en probabilité vers`. PreuveSoit" >0. PosonsE(Xn) =`+unaveclimun= 0. Alors il existeN2Ntel que : nN) junj< "=2 et donc à partir du rangN, jXnE(Xn)j< "=2) jXn`j< ";(2.1) carjXn`j=jXnE(Xn) +E(Xn)`j jXnE(Xn)j+jE(Xn)`j. L"implication (2.1) peut être encore écrite sous la forme jXn`j ") jXnE(Xn)j "=2: Par conséquent, en utilisant l"inégalité de Bienaymé-Chebyshev,

P(jXn`j ")P(jXnE(Xn)j "=2)V(Xn)("=2)2;

qui tend vers 0 quandntend vers l"infini. Conséquence : Pour que(Xn)converge en probabilité versX, il suffit queE(XnX)!0etV(XnX)!

0lorsquen! 1(la démonstration passe par l"inégalité de Bienaymé-Chebychev).

Cours Proba-Stat / Pierre DUSART112.1.3 Convergence en moyenne quadratique Définition 5Une suite de v.a.r.(Xn)n2Nconverge en moyenne quadratique vers une v.a.r.Xsi lim n!1E((XnX)2) = 0:

Propriétés :

1. La convergence en moyenne quadratique entraîne la convergence en probabilité.

2. Pour les(Xn)sont des variables aléatoires d"espérance et de variance finies, siE(Xn)!et

V ar(Xn)!0alorsXnconverge en moyenne quadratique vers. Preuve1. On applique l"inégalité de Markov avecY=jXnXj,a="2etg(t) =t2. Il suffit ensuite de remarquer queP(jXnXj2> "2) =P(jXnXj> ")et utiliser l"hypothèse que limE((XnX)2) = 0.

2.limE((Xn)2) = limE(X2n)2E(X) +2= limE(X2n)E(Xn)2= limV(Xn) = 0:

2.1.4 Loi faible des grands nombres

Théorème 2.1.2Soit(Xn)une suite de variables aléatoires indépendantes sur le même espace probabi-

lisé( ;P)ayant une même espérance mathématique`et des variances vérifiantlimn!11n 2Pn i=12i= 0:

On poseSn=X1++XnalorsSnn

converge en probabilité vers`.

Si on considère une suite de variables aléatoires(Xn)indépendantes définies sur un même espace probabi-

lisé, ayant même espérance et même variance finie notées respectivementE(X)etV(X). La loi faible des

grands nombres stipule que, pour tout réel"strictement positif, la probabilité que la moyenne empirique

S nn s"éloigne de l"espérance d"au moins", tend vers 0 quandntend vers l"infini. La moyenneSnn converge en probabilité vers l"espérance communeE(X).

PreuveOn aE(Sn=n) =`etlimV(Sn=n) = lim1n

2P2i= 0par hypothèse. Ainsi par le théorème

2.1.1,Sn=nconverge en probabilité vers`.

2.2 Convergence en loi

Définition 6Soient(Xn)etXdes variables aléatoires sur un même espace probabilisé( ;P), de fonc- tions de répartition respectivesFnetF; on dit que les(Xn)convergent versXen loi (et on noteXnL!X) si en tout pointxoùFest continue, lesFn(x)convergent versF(x).

Propriétés : (admises)

1. La convergence en probabilité entraîne la convergence en loi.(XnP!X))(XnL!X)

2. Si les(Xn)etXsont des variables aléatoires discrètes, alorsXnconverge en loi versXsi et

seulement si

8x2R;limn!1P(Xn=x) =P(X=x):

PreuveIl s"agit de montrer que si(Xn)nconverge en probabilité versX, la suite(FXn)nconverge vers F

X(respectivement préalablement notéesFnetF). On utilise le lemme suivant : soientA,Bdes variables

aléatoires réelles,cun réel et" >0. Alors on a l"inégalité

P(Ac)B(c+") +P(jABj> ");

12CHAPITRE 2. CONVERGENCEScar

P(AC) =P(Ac\Bc+") +P(Ac\B > c+")

=P(AcjBc+")P(Bc+") +P(Ac\B" > c)

P(Bc+") +P(AB >")carP(j)1

P(Bc+") +P(jABj> ")

carP(jABj> ") =P(AB > ") +P(AB <")P(AB <") De ce lemme, il vient respectivement pour(A=Xn; c=x; B=X)puis(A=X; c=x"; B=Xn)

P(Xnx)P(Xx+") +P(jXnXj> ")(2.2)

P(Xnx)P(Xx") +P(jXnXj> ")(2.3)

Passons à la démontration proprement dite. Soitxun point oùFest continue. Soit >0. Par continuité

quotesdbs_dbs29.pdfusesText_35