[PDF] [PDF] Intégration et probabilités (cours + exercices corrigés) L3 MASS

Le but de ce cours est d'introduire les notions de théorie de la mesure qui seront utiles en calcul des probabilités et en analyse Il est destiné aux étudiants qui 



Previous PDF Next PDF





[PDF] Probabilités Exercices corrigés

Probabilités exercices corrigés Terminale S Probabilités Exercices corrigés 1 Combinatoire avec démonstration 2 Rangements 3 Calcul d'événements 1 4



[PDF] PROBABILITES – EXERCICES CORRIGES - Math2Cool

2) On a tiré une boule blanche Calculer le probabilité qu'elle provienne de l'urne 1 u Page 3 Cours 



[PDF] Cours de probabilités et statistiques

k(1 − p)k−1 = p/p2 = 1/p Un calcul analogue permet de calculer la variance ( exercice) 2 4 2 Loi de Poisson Cette loi est une approximation de la loi binomiale 



[PDF] Intégration et probabilités (cours + exercices corrigés) L3 MASS

Le but de ce cours est d'introduire les notions de théorie de la mesure qui seront utiles en calcul des probabilités et en analyse Il est destiné aux étudiants qui 



[PDF] Probabilités et statistique pour lingénieur - CERMICS

10 jan 2018 · les membres de l'équipe enseignante du cours de probabilités de que pour leur contribution `a la compilation d'exercices corrigés du 



[PDF] EXERCICES corrigés de PROBABILITES

EXERCICES corrigés de PROBABILITES Calculer la probabilité d'un événement Exercice n°1: Un sachet contient 2 bonbons à la menthe, 3 à l'orange et 5 au 



[PDF] Exercices et problèmes de statistique et probabilités - Dunod

Rappel de cours Corrigés des exercices centrale), Lois de probabilités fréquemment utilisées en statistique (Loi normale, du Khi-deux, de Student, de 



[PDF] Exercices de probabilités avec éléments de correction Memento

e−axdx et utiliser la formule d'inversion Exercice 4 Lois images 1 Soit X une variables aléatoire de loi E(λ) Déterminer la loi de ⌊X⌋ 



[PDF] Probabilités & Statistiques - Laboratoire Analyse, Géométrie et

de cours Suivi des fiches d'exercices Ce document, ainsi éventuellement que d'autres à venir, peut être trouvé au format PDF à Pour simplifier, on suppose dans ce cours que tout ensemble de réalisations est un événement En La probabilité uniforme sur Ω (ou distribution équiprobable) est la probabilité P définie



[PDF] Exercices de Probabilités

Calculer pour Alice, Bob et Jo, la probabilité d'avoir raté l'éléphant Exercice 6 Au cours d'un voyage low-cost en avion entre Paris et New-York en paant par  

[PDF] probabilité cours s2 economie pdf

[PDF] probabilité cours simple

[PDF] probabilité cours terminale

[PDF] probabilité de tomber enceinte ? 48 ans

[PDF] probabilité et statistique 2eme année st

[PDF] probabilité et statistique 2eme année st pdf

[PDF] probabilité et statistique exercices corrigés

[PDF] probabilité et statistique exercices corrigés pdf

[PDF] probabilité exercices corrigés 3ème

[PDF] probabilité exercices corrigés pdf s3

[PDF] probabilité exercices corrigés seconde

[PDF] probabilité s2 economie exercices

[PDF] probabilité terminale s exercices corrigés

[PDF] probabilité terminale stmg

[PDF] probability in maths pdf

Integration et probabilites

(cours + exercices corriges)

L3 MASS, Universite Nice Sophia Antipolis

version 2021Sylvain Rubenthaler

Table des matieres

Introduction iii

1 Denombrement (rappels) 1

1.1 Ensembles denombrables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theorie de la mesure 5

2.1 Tribus et mesures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Tribus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Mesures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Integrales des fonctions etagees mesurables positives. . . . . . . . . . . . . . . 9

2.4 Fonctions mesurables et integrales . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 Integrales des fonctions mesurables positives . . . . . . . . . . . . . . . 10

2.4.2 Integrales des fonctions mesurables de signe quelconque. . . . . . . . . 11

2.5 Fonction de repartition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Ensembles negligeables 17

4 Theoremes limites 21

4.1 Stabilite de la mesurabilite par passage a la limite. . . . . . . . . . . . . . . . 21

4.2 Theoremes de convergence pour les integrales. . . . . . . . . . . . . . . . . . . 22

4.3 Integrales dependant d'un parametre . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Mesure produit et theoremes de Fubini 33

5.1 Theoremes de Fubini et Fubini-Tonelli . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Changement de variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Fondements de la theorie des probabilites 41

6.1 Denitions generales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Esperance d'une v.a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Inegalites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Lois classiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4.1 Lois discretes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.4.2 Lois continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 Fonctions caracteristiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.6 Fonctions generatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

i

6.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.7.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.7.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Variables independantes 59

7.1 Denitions generales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.1.1Evenements et variables independantes . . . . . . . . . . . . . . . . . 59

7.1.2 Densites de variables independantes . . . . . . . . . . . . . . . . . . . 60

7.2 Lemme de Borel-Cantelli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3 Somme de deux variables independantes . . . . . . . . . . . . . . . . . . . . . 62

7.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Convergence de variables aleatoires 71

8.1 Les dierentes notions de convergence . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Loi des grands nombres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.3 Theoreme central-limite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.4.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.4.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9 Conditionnement 83

9.1 Conditionnement discret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.2 Esperance conditionnelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9.3 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3.1Enonces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3.2 Corriges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

10 Variables gaussiennes 89

10.1 Denitions et proprietes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10.2 Gaussiennes et esperance conditionnelle . . . . . . . . . . . . . . . . . . . . . 90

A Table de la loi normale 93

Introduction

Le but de ce cours est d'introduire les notions de theorie de la mesure qui seront utiles en calcul des probabilites et en analyse. Il est destine aux etudiants qui veulent poursuivre leurs etudes dans un master a composante mathematique. Pour un cours plus complet, se reporter a la bibliographie. Informations utiles (partiels, bar^emes, annales, corriges, ...) : PREREQUIS : Pour pouvoir suivre ce cours, l'etudiant doit conna^tre, entre autres, les developpements limites, les equivalents, les etudes de fonction, le denombrement, les nombre complexes, la theorie des ensembles., les integrales et primitives usuelles, la trigonometrie, etc. Nouveautes 2019 : corrections apportees par Laure Helme-Guizon (Teaching Fellow, UNSW, Sydney, Australia) et Antoine Mal. Un grand merci a eux. iii

Chapitre 1

Denombrement (rappels)

1.1 Ensembles denombrables

Denition 1.1.1.Injection.

SoitE;Fdes ensembles,f:E!Fest une injection si8x;y2E,f(x) =f(y))x=y.

Denition 1.1.2.Surjection.

SoitE;Fdes ensembles,f:E!Fest une surjection si8z2F,9x2Etel quef(x) =z.

Denition 1.1.3.Bijection.

SoitE;Fdes ensembles,f:E!Fest une bijection sifest une injection et une surjection. Proposition 1.1.4.SoientE;F;Gdes ensembles. Soientf:E!F,g:F!G. Alors [f etginjectives])[gfinjective]. Demonstration.Soientx;ytels quegf(x) =gf(y). L'applicationgest injective donc

f(x) =f(y). L'applicationfest injective doncx=y.Denition 1.1.5.On dit qu'un ensembleEest denombrable s'il existe une injection deE

dansN. Dans le cas ouFest inni, on peut alors demontrer qu'il existe alors une bijection deEdansN. (Cela revient a dire que l'on peut compter un a un les elements deE.)

Exemple 1.1.6.Tout ensemble ni est denombrable.

Exemple 1.1.7.Zest denombrable car l'application

f:Z!N n7!(

2nsin>0

2n1sin <0

est bijective (donc injective).01 23-1-2-30 2 4

13Figure1.1 {Enumeration des elements deZ.

1

2CHAPITRE 1. DENOMBREMENT (RAPPELS)

Exemple 1.1.8.NNest denombrable car l'application

f:NN!N (p;q)7!(p+q)(p+q+ 1)2 +q est bijective (donc injective).0 129 58
74

3 6Figure1.2 {Enumeration des elements deNN.

Exemple 1.1.9.L'ensembleQest denombrable. L'ensembleRn'est pas denombrable. Proposition 1.1.10.Si on aE0,E1, ...,En, ...des ensembles denombrables alorsE= E

0[E1[E2[ =[n>0Enest un ensemble denombrable.

(En d'autres termes, une reunion denombrable d'ensembles denombrables est denombrable.) Demonstration.S Pour touti>0,Eiest denombrable donc9fi:Ei!Ninjective. Soit

F:[n>0En!NN

x7!(i;fi(x)) six2Ei Cette applicationFest injective. L'ensembleNNest denombrable donc il existeg:NN! Ninjective. Par la proposition 1.1.4,gFest injective. Donc[n>0Enest denombrable.1.2 Exercices Tous les exercices de ce chapitre n'ont pas un lien direct avec le cours. Par contre, ils constituent des revisions necessaires a la suite du cours. 1.2.1

Enonces

1) Rappel :Sif:E!FetAF,f1(A) =fx2E:f(x)2Ag. SiCE,f(C) =

ff(x);x2Cg.

On considere l'applicationf:R!R,x7!x2.

(a) Determinerf([3;1]),f([3;1]),f(]3;1]). (b) Determinerf1(] 1;2]),f1(]1;+1[),f1(]1;0][[1;2[).

2) Calculer les limites suivantes :

(a) lim x!0sin(x)log(1+x) (b) lim x!+11 +2x x (c) lim x!01cos(x)xsin(x)

1.2. EXERCICES3

(d) lim x!01(1+x)1(1+x)pour; >0.

3) Calculer les integrales suivantes :

(a)R+1

0x2exdx

(b)R+1 e

11(log(z))2zdz

(c) R1

01(2x)(1+x)dx

(d) R=4 0cos

2(x)+sin2(x)cos

2(x)dx.

4) Integrales de Wallis

Pour toutn2N, on pose :

I n=Z =2 0 sinn(x)dx : (a) CalculerI0etI1. (b) Donner une relation de recurrence entreInetIn+2. (c) En deduire que :

8p2N; I2p=(2p1)(2p3):::12p(2p2):::22

etI2p+1=2p(2p2):::2(2p+ 1)(2p1):::1: (d) Montrer que8p2N;I2p+16I2p6I2p1. En deduire que limp!+1I 2pI

2p+1= 1.

(e) En deduire la formule de Wallis : lim p!+11p

2p(2p2):::2(2p1)(2p3):::1

2 (f) Montrer que8n2N,Inn!+1p 2n.

1.2.2 Corriges

(1) (a)f([3;1]) = [1;9],f([3;1]) = [0;9],f(]3;1]) = [0;9[. (b)f1(] 1;2]) = [p2;p2],f1(]1;+1[) =] 1;1[[]1;+1[,f1(]1;0][ [1;2[) =f0g[]p2;1][[1;p2[. (2) (a) sin(x)log(1+x)x!0+xx = 1!x!0+1 (b) 1 +2x x=exlog(1+2x )etxlog1 +2x x!+12xx !x!+12 donc par continuite de la fonction exp :1 +2x x!x!+1e2 (c)

1cos(x)xsin(x)=(x2=2)+o(x2)x

2+o(x2)x!0x

quotesdbs_dbs19.pdfusesText_25