[PDF] [PDF] Fourier transform - MIT

Transform domain Linearity T akbk Multiplication x(t)y(t) ∑∞ m=−∞ ambk− m Cosine 2A cos(ω0t + B) 1 a+jω Rectangular pulse Π( t 2T ) 2 sin(ωT ) ω Sinc (normalized) sin(Wt) πt Π( ω 2W ) Discrete-time Fourier transform (DTFT)



Previous PDF Next PDF





[PDF] Table of Fourier Transform Pairs

Definition of Inverse Fourier Transform Р ¥ ¥- = w w p w de F tf tj )( 2 1 )( wt tSa ) 2 ( 2 Bt Sa B p )( B rect w )( ttri ) 2 (2 w Sa ) 2 () 2 cos( t t p t rect



[PDF] The Fourier Transform: Examples, Properties, Common Pairs

Amplitude of combined cosine and sine Phase Relative proportions of sine and cosine The Fourier Transform: Examples, Properties, Common Pairs Example: 



[PDF] Fourier transform - MIT

Transform domain Linearity T akbk Multiplication x(t)y(t) ∑∞ m=−∞ ambk− m Cosine 2A cos(ω0t + B) 1 a+jω Rectangular pulse Π( t 2T ) 2 sin(ωT ) ω Sinc (normalized) sin(Wt) πt Π( ω 2W ) Discrete-time Fourier transform (DTFT)



[PDF] Fourier Transform - UTSA

f(t) cos (wt) dt For the sake of symmetry, we may define the Fourier cosine transform c by f 



[PDF] Table of Fourier Transform Pairs

Function, f(t) Fourier Transform, F(w) Definition of Inverse Fourier Transform Р wt tSa ) 2 ( 2 Bt Sa B p )( B rect w )( ttri ) 2 (2 w Sa ) 2 () 2 cos( t t p t rect



[PDF] Table of Fourier Transform Pairs - Purdue Engineering

Function, f(t) Fourier Transform, F(w) Definition of Inverse Fourier Transform ò wt tSa ) 2 ( 2 Bt Sa B p )( B rect w )( ttri ) 2 (2 w Sa ) 2 () 2 cos( t t p t rect



[PDF] Table of Fourier Transform Pairs - Rose-Hulman

There are two similar functions used to describe the functional form sin(x)/x One is the sinc() function, and the other is the Sa() function We will only use the 



[PDF] The Fourier Transform - MSU P-A Welcome Page

Let's define a function F(m) that incorporates both cosine and sine series coefficients, with the sine series distinguished by making it the imaginary component:



[PDF] Chapter 2 Signals - UF ABE

of sine and cosine functions (fourier analysis) ▫ Fourier General form of solution: y=A cos wt+ B sin wt ; ω= k m properties of a signal (fourier transform),

[PDF] fourier transform of cosine squared

[PDF] fourier transform of exp(jwt)

[PDF] fourier transform of e^ t

[PDF] fourier transform of e^ at u(t) proof

[PDF] fourier transform of rectangular function

[PDF] fourier transform of rectangular pulse train

[PDF] fourier transform of sinc^3

[PDF] fourier transform of step function proof

[PDF] fourier transform of triangle

[PDF] fourier transform pdf for signals and systems

[PDF] fourier transform periodic boundary conditions

[PDF] fourier transform poisson equation

[PDF] fourier transform questions and answers pdf

[PDF] fourier transform solved examples pdf

[PDF] fournisseur de solutions de sécurité

Introduction to Signal Processing Summer semester 2003/4 Transform tables

Fourier series (FS)

x(t) =1X k=¡1a kejk!0tak=1 T Z T x(t)e¡jk!0tdt

Property/signal Time domain Transform domain

LinearityAx(t) +By(t)Aak+Bbk

Time shiftingx(t¡¿)e¡jk!0¿ak

Time reversalx(¡t)a¡k

Time scaling

x(at),a >0 (periodicT a )ak

Di®erentiation

d dt x(t)jk!0ak

IntegrationRt

¡1x(t)dt,a0= 0ak

jk! 0

ConvolutionR

Multiplicationx(t)y(t)P1

m=¡1ambk¡m

Cosine 2Acos(!0t+B)a1=AejB;a¡1=Ae¡jB

Parseval

1 T R

Tjx(t)j2dt=P1

k=¡1jakj2

Fourier transform (FT)

x(t) =1

2¼Z

1 ¡1

X(j!)ej!td! X(j!) =Z

1 ¡1 x(t)e¡j!tdt

Property/signal Time domain Transform domain

Linearityax(t) +by(t)aX(j!) +bY(j!)

Time shiftingx(t¡¿)e¡j!¿X(j!)

Time scalingx(at)1

jajX(j!=a)

Di®erentiation

d dt x(t)j!X(j!)

IntegrationRt

¡1x(¿)d¿1

j!

X(j!) +¼X(0)±(!)

ConvolutionR1

¡1h(¿)x(t¡¿)d¿ H(j!)X(j!)

Multiplicationx(t)y(t)1

2¼R

1

¡1X(ju)Y(j!¡ju)du

Delta±(t) 1

One 1 2¼±(!)

Exponentej!0t2¼±(!¡!0)

Cosine cos(w0t)¼[±(!¡!0) +±(!+!0)]

Sine sin(w0t)¼

j [±(!¡!0)¡±(!+!0)]

Unit stepu(t)1

j!

Decaying stepu(t)e¡at,a >01

a+j!

Rectangular pulse ¦(

t

2T)2sin(!T)

Sinc (normalized)

sin(Wt) ¼t 2W)

ParsevalR1

¡1jx(t)j2dt=1

2¼R

1

¡1jX(j!)j2d!

22 February 2004 1

Introduction to Signal Processing Summer semester 2003/4 Transform tables

Discrete-time Fourier transform (DTFT)

x[n] =1

2¼Z

2¼X(ej!)ej!nd! X(ej!) =1X

n=¡1x[n]e¡j!n

Property/signal Time domain Transform domain

Linearityax[n] +by[n]aX(ej!) +bY(ej!)

Time shiftingx[n¡n0]e¡j!n0X(ej!)

Time reversalx[¡n]X(e¡j!)

ConvolutionP1

m=¡1x[m]y[n¡m]X(ej!)Y(ej!)

Multiplicationx[n]y[n]1

2¼R

2¼X(ejµ)Y(ej(!¡µ))dµ

Delta±[n] 1

One 1 2¼P1

m=¡1±(!¡2¼m)

Exponentej!0n2¼P1

m=¡1±(!¡!0¡2¼m)

Cosine cos[w0n]¼P1

m=¡1[±(!¡!0¡2¼m) +±(!+!0¡2¼m)]

Sine sin[w0t]¼

j P 1

Decaying stepu[n]an,jaj<11

1¡ae¡j!

Rectangular pulse ¦

N[n]sin[!(N+1

2 sin(!=2)

Sinc (normalized)

sin[Wn] ¼n P 1 m=¡1¦(!¡2¼m 2W)

ParsevalP1

n=¡1jx[n]j2=1

2¼R

2¼jX(ej!)j2

Discrete Fourier transform (DFT)

x[n] =1 N

N¡1X

k=0X(k)ej2¼ N nkX(k) =N¡1X n=0x[n]e¡j2¼ N nk

Property/signal Time domain Transform domain

Linearityax[n] +by[n]aX(k) +bY(k)

Time shiftingx[n¡n0]modNe¡j(2¼

N n0k)X(k)

ConvolutionPN¡1

m=0x[m]modNy[n¡m]modNX(k)Y(k)

Multiplicationx[n]y[n]1

N P

N¡1

l=0X(l)modNY(k¡l)modN

ParsevalPN¡1

n=0jx[n]j2=1 N P

N¡1

k=0jX(k)j2

22 February 2004 2

Introduction to Signal Processing Summer semester 2003/4 Transform tables

Laplace transform

x(t) =1

2¼jZ

¾+j1

¾¡j1X(s)estds X(s) =Z

1 ¡1 x(t)e¡stdt

Property/signal Time domain Transform domain

Linearityax(t) +by(t)aX(s) +bY(s)

Time shiftingx(t¡¿)e¡s¿X(s)

time scalingx(at)1 jajX(s=a)

Di®erentiation

d dt x(t)sX(s)

IntegrationRt

¡1x(¿)d¿1

s X(s)

ConvolutionR1

¡1x(¿)y(t¡¿)d¿ X(s)Y(s)

Delta±(t) 1

Unit stepu(t)1

s (Refsg>0)

Decaying stepe¡atu(t)1

s+a(Refsg>¡a)

Decaying step¡e¡atu(¡t)1

s+a(Refsg<¡a)

Causal Cosine cos(w0t)u(t)s

s

2+!20(Refsg>0)

Causal Sine sin(w0t)u(t)!0

s

2+!20(Refsg>0)

Z transform

x[n] =1

2¼jI

X(z)zn¡1dz X(z) =1X

n=¡1x[n]z¡n

Property/signal Time domain Transform domain

Linearityax[n] +by[n]aX(z) +bY(z)

Time shiftingx[n¡n0]z¡n0X(z)

time reversalx[¡n]X(z¡1)

ConvolutionP1

m=¡1x[m]y[n¡m]X(z)Y(z)

Delta±[n] 1

Unit stepu[n]1

1¡z¡1(jzj>1)

Decaying stepanu[n]1

1¡az¡1(jzj> a)

Decaying step¡anu[¡n¡1]1

1¡az¡1(jzj< a)

22 February 2004 3

Introduction to Signal Processing Summer semester 2003/4 Transform tables

General

Description Equation

Rectangular pulse in continuous-time ¦(x) =8

>:1jxj<1 2 1 2 jxj=1 2

0elsewhere

Rectangular pulse in discrete-time ¦

N[n] =(1jnj ·N

0elsewhere

Unit step in continuous-timeu(x) =8

>:1x >0 1 2 x= 0

0elsewhere

Unit step in discrete-timeu[n] =(1n¸0

0elsewhere

Sinc in continuous-time sinc(x) =

sin(¼x) ¼x Cosine of sum of angles cos(a+b) = cos(a)cos(b)¡sin(a)sin(b) Sine of sum of angles sin(a+b) = sin(a)cos(b) + cos(a)sin(b)

22 February 2004 4

quotesdbs_dbs6.pdfusesText_12