[PDF] [PDF] Corrigé du baccalauréat S Antilles–Guyane 20 juin 2016 - APMEP

20 jui 2016 · Corrigé du baccalauréat S Antilles–Guyane 20 juin 2016 EXERCICE 1 5 points Commun à tous les candidats Les valeurs approchées des 



Previous PDF Next PDF





[PDF] Corrigé du baccalauréat S Antilles–Guyane 20 juin 2016 - APMEP

20 jui 2016 · Corrigé du baccalauréat S Antilles–Guyane 20 juin 2016 EXERCICE 1 5 points Commun à tous les candidats Les valeurs approchées des 



[PDF] TS Antilles-Guyane 20 juin 2016 - APMEP

20 jui 2016 · Baccalauréat S Antilles-Guyane 20 juin 2016 EXERCICE 1 5 points Commun à tous les candidats Les valeurs approchées des résultats 



[PDF] Corrigé du baccalauréat S - 20 juin 2016 - Sigmaths

Corrigé du baccalauréat S Antilles-Guyane 20 juin 2016 EXERCICE 1 5 points Commun à tous les candidats Les valeurs approchées des résultats seront 



[PDF] Les rayons X, outil dinvestigation (Bac S - Antilles-Guyane - juin 2016)

(Bac S - Antilles-Guyane - juin 2016) Corrigé réalisé par B Louchart, professeur de Physique-Chimie © http://b louchart free 1 Accélération d'un faisceau d' 



[PDF] Baccalauréat S - 2016 - Scolamath

19 nov 2016 · Baccalauréat S Antilles-Guyane 20 juin 2016 EXERCICE 1 5 points Commun à tous les candidats Les valeurs approchées des résultats 



[PDF] Antilles-Guyane 22 juin 2016 - Mathovore

22 jui 2016 · Baccalauréat ES–L Antilles–Guyane juin 2016 EXERCICE 1 5 points Commun à tous les candidats Pour chacune des questions suivantes, 



[PDF] Sujets bac 93 maths ce corriges Telecharger, Lire PDF - Canal Blog

Bac ES/L 2016 : le sujet corrigé de maths obligatoire en vidéo Vidéo à Antilles - Guyane Corrigé maths bac S Métropole Juin 2014 – Annales2maths



[PDF] Préparation bac blanc - Dominique Frin

Quatre parties au programme du bac blanc : 1 Annales de baccalauréat pouvant être étudier : à trouver à l'adresse Antilles Guyane juin 2016 : exo 1 A, 2 et 



pdf Corrigé du baccalauréat S Antilles–Guyane 20 juin 2016

Corrigé du baccalauréat S Antilles–Guyane 20 juin 2016 [Corrigé du baccalauréat S Antilles–Guyane 20 juin 2016 EXERCICE1 5 points Commun à tous les candidats Les valeurs approchées des résultats seront données à10?4près Les partiesAetBsont indépendantes



Baccalauréat S - 2016 - APMEP

[Corrigé du baccalauréat S Antilles-Guyane 20 juin 2016 EXERCICE 1 5 points Commun à tous les candidats Partie A 1 a Arbrepondéré: 065 A D 008 092 D 035 B D 005 095 D b Les évènements A et B forment une partition de l’univers on a donc d’après la formule desprobabilités totales : p ³ D ´ =p ³ A ?D ´ +p ³ B ?D



Baccalauréat S - 20 juin 2016 - APMEP

[Baccalauréat S Antilles-Guyane 20 juin 2016 EXERCICE 1 5 points Commun à tous les candidats Les valeurs approchées des résultats seront données à 10?4 près Les parties Aet B sont indépendantes Partie A Un fabricant d’ampoules possède deux machines notées A et B La machine A fournit 65 de la



Searches related to baccalauréat s antilles guyane 20 juin 2016

Baccalauréat 2016 - S Antilles-Guyane Série S Obli et Spé 20 juin 2016 Correction Like Math93 on Facebook / Follow Math93 on Twitter / Remarque : dans la correction détaillée ici proposée les questions des exercices sont presque intégralement réécrites pour faciliter la lecture et la compréhension du lecteur

[PDF] baccalauréat s antilles guyane septembre 2016

[PDF] baccalauréat s asie 21 juin 2011 corrigé

[PDF] baccalauréat s métropole–la réunion 12 septembre 2016 corrigé

[PDF] baccalauréat scientifique en anglais cv

[PDF] baccalauréat série b

[PDF] baccalauréat série c

[PDF] bachelier en sciences de la motricité

[PDF] bachelier infirmier promotion sociale

[PDF] back to school agreg ink

[PDF] bactéries du yaourt svt

[PDF] bactéries lactiques du yaourt

[PDF] bactéries lactiques yaourt

[PDF] bacteriologie clinique pdf

[PDF] bacteriologie cours ppt

[PDF] bactériologie générale

?Corrigé dubaccalauréat S Antilles-Guyane20 juin 2016?

EXERCICE15 points

Commun à tousles candidats

Les valeurs approchées des résultatsseront données à10-4près.

Les partiesAetBsont indépendantes

Partie A

Un fabricant d"ampoules possède deux machines, notées A et B. La machine A fournit 65 % de la production, et la machine B fournit le reste. Certaines am- poules présentent un défaut de fabrication : — à la sortie de la machine A, 8 % des ampoules présentent un défaut; — à la sortie de la machine B, 5 % des ampoules présentent un défaut.

On définit les évènements suivants :

—A: "l"ampoule provient de la machine A»;

—B: "l"ampoule provient de la machine B»;

—D: "l"ampoule présente un défaut».

1.On prélève un ampoule au hasard parmi la production totale d"une journée.

a.Construire un arbre pondéré représentant la situation.

Solution:

A 0,65? D 0,08 D0,92 B 0,35? D 0,05 D0,95 Solution:AetBforment une partition de l"univers donc d"après les proba- bilités totales on a :

P?D?=P?D∩A?

+P?D∩B? =PA?D?

×P(A)+PB?D?

×P(B)=0,598+0,3325

P?D? =0,9305

c.L"ampoule tirée est sans défaut.Calculer la probabilité qu"elle provienne de la machine A.

Solution:On cherchePD(A)

PD(A)=P?

D∩A?

P?D? =0,5980,9305=11781861≈0,6427

2.On prélève 10 ampoules au hasard parmi la production d"une journée à la sortie

de la machine A. La taille du stock permet de considérer les épreuves comme in- dépendantes et d"assimiler les tirages à tirages avec remise. Calculer la probabilité d"obtenir au moins 9 ampoules sans défaut. quedeuxissues:l"ampouleestsansdéfautouelle présenteundéfautdontlapro- babilité de succès estp=P? D? =0,92. SoitXla variable aléatoire comptant le nombre d"ampoules sans défaut alors

X?→B(10 ; 0,92)

Oncherche

Partie B

1.On rappelle que siTsuit une loi exponentielle de paramètreλ(λétant un réel

strictement positif) alors pour tout réel positifa,P(T?a)=a 0

λe-λxdx.

a.Montrer queP(T?a)=e-λa.

Solution:

P(T?a)=1-P(T?a)=1-a

0

λe-λxdx=1-?

-e-λx?a 0 =1-?? -e-λa? (-1)? 1-?

1-e-λa?

=e-λa b.Montrer que siTsuit une loi exponentielle alors pour tous les réels positifst etaon a P

T?t(T?t+a)=P(T?a).

Solution:

PT?t(T?t+a)=P?

PT?t(T?t+a)=P(T?a)

2.Dans cette partie, la durée de vie en heures d"une ampoule sans défaut est une

variable aléatoireTqui suit la loi exponentielle d"espérance 10000. a.Déterminer la valeur exacte du paramètreλde cette loi. Solution:L"espérance de la loi exponentielle de paramètreλest1λ

On a donc1

λ=10000??λ=10-4

b.Calculer la probabilitéP(T?5000).

Solution:

Page 2

c.Sachantqu"uneampoulesansdéfautadéjàfonctionnépendant7000 heures, calculer la probabilité que sa durée de vie totale dépasse 12000 heures. Solution:On cherchePT?7000(T?12000)=PT?7000(T?7000+5000)

D"aprèslaquestion1.b.onadonc

PT?7000(T?12000)=P(T?5000)≈0,6065

Partie C

L"entreprisea cherché à améliorer la qualité de sa production etaffirmequ"il n"y apasplusde6% d"ampoulesdéfectueusesdanssaproduction.Uneassociation de consommateurs réalise un test sur un échantillon et obtient 71 ampoules défectueuses sur 1000.

1.Dans le cas où il y aurait exactement 6 % d"ampoules défectueuses, déterminer un

défectueuses sur un échantillon aléatoire de taille 1000. Solution:La proportionp=0,06 et la taillen=1000 de l"échantillon vérifient : n?30 ,np=60?5 etn(1-p)=940?5 On peut donc bâtir l"intervalle de fluctuation asymptotiqueau seuil de 95 % I=? p-1,96? p(1-p)?n;p+1,96? p(1-p)?n?

On a ici

I=[0,0452 ; 0,0748]

2.A-t-on des raisons de remettre en cause l"affirmation de l"entreprise?

Solution:Ici, la fréquence observée d"ampoules défectueuses estf=0,071 et on af?I donc on n"a pas de raison de remettre en cause l"affirmation de l"entreprise

EXERCICE23 points

Commun à tousles candidats

On munit le plan complexe d"un repère orthonormé direct?

O ;-→u,-→v?

On noteCl"ensemble des pointsMdu plan d"affixeztels que|z-2|=1.

1.Justifier queCest un cercle, dont on précisera le centre et le rayon.

Solution:SoitB(2) alors|z-2|=1??BM=1

Cest donc le cercle de centreB(2) et de rayon 1.

2.Soitaun nombre réel. On appelleDla droite d"équationy=ax.

Déterminer le nombre de points d"intersection entreCetDen fonction des va- leurs du réela.

Solution:Soitz=x+iy?M(z)?C

M(z)?D???|z-2|=1

z=x+iax???|(x-2)+iax|=1 z=x+iax

Δ=16-12(1+a2)=4-12a2

Page 3

Δ>0??a2<13??-?

3 3On en déduit que :

— sia??

3 3? 3

3;+∞?

alorsCetDn"ont aucun point commun

— sia= -?

3

3ou sia=?

3

3alorsCetDont un seul point d"intersection. Les

deux droitesDsont les tangentes àCpassant par O

— sia??

3 3;? 3 3? alorsCetDont deux points communs distincts

EXERCICE37 points

Commun à tousles candidats

Partie A

On considère la fonctionfdéfinie pour tout réelxparf(x)=xe1-x2.

1.Calculer la limite de la fonctionfen+∞.

Indication : on pourra utiliserque pour tout réel x différent de0, f(x)=e x×x2ex2.

Solution:

?x?=0 ,f(x)=ex×x2ex2 or lim x→+∞x 2 ex2= 0 car limx→+∞e x2x2=+∞. De plus limx→+∞ex=0

Donc par produit,

limx→+∞f(x) = 0

2. a.On admet quefest dérivable surRet on notef?sa dérivée.

Démontrer que pour tout réelx,

f ?(x)=?1-2x2?e1-x2. v(x)=1-x2=? ?u?(x)=1 v ?(x)=-2x ?x?R,f?(x)=(1-2x2)e1-x2 b.En déduire le tableau de variations de la fonctionf. on en déduit le tableau suivant :

Page 4

x-∞-? 2 2? 2

2+∞

f ?(x)-0+0- f(x)0 2e 2? 2e 2 0 On remarque quefest impaire donc limx→-∞f(x) = 0

Partie B

On considère la fonctiongdéfinie pour tout réelxparg(x)=e1-x. Sur le graphique ci-dessous, on a tracé dans un repère les courbes représenta- tivesCfetCgrespectivement des fonctionsfetg.

0,5 1,0 1,5 2,0 2,5 3,0-0,5-1,0-1,5-2,0-2,5

-0,5 -1,0 -1,50,5

1,01,52,02,5

Cf Cg Le but de cette partie est d"étudier la position relative de ces deux courbes.

1.Après observation du graphique, quelle conjecture peut-onémettre?

Solution:Il semblerait queCfsoit toujours en dessous deCg

2.Justifier que, pour tout réelxappartenantà ]-∞; 0],f(x)

Solution:SurR, e1-x>0 et e1-x2>0

On en déduit que sur ]-∞; 0] ,f(x)?0 etg(x)>0

On a donc bien

?x?]-∞; 0] ,f(x)Page 5

3.Dans cette question, on se place dans l"intervalle ]0 ;+∞[.

On pose, pour tout réelxstrictement positif,Φ(x)=lnx-x2+x. a.Montrer que, pour tout réelxstrictement positif, f(x)?g(x) équivaut àΦ(x)?0.

Solution:

f(x)?g(x)??xe1-x2?e1-x six>0 alors cette inéquation est équivalente à ln? xe1-x2? ?ln?e1-x?car la fonction ln est croissante sur ]0 ;+∞[ ln? xe1-x2? ?ln?e1-x???ln(x)+ln? e1-x2? ?ln?e1-x???ln(x)+1-x2?

1-x??ln(x)-x2+x?0

Finalement

six>0,f(x)?g(x) équivaut àΦ(x)?0 On admet pour la suite quef(x)=g(x) équivaut àΦ(x)=0. b.On admet que la fonctionΦest dérivable sur ]0 ;+∞[. Dresser le tableau de variation de la fonctionΦ. (Les limites en 0 et+∞ne sont pas attendues.)

Solution:

or sur ]0 ;+∞[ ,2x+1 x>0 doncΦ?(x) est du signe de (1-x) on en déduit le tableau x01+∞ ?(t)+0-

Φ(t)0

c.En déduire que, pour tout réelxstrictement positif,Φ(x)?0.

Solution:

Sur ]0 ;+∞[,Φadmet 0 pour maximum donc?x?]0 ;+∞[ ,Φ(x)?0

4. a.La conjecture émise à la question 1. de la partie B est-elle valide?

Solution:

La conjecture est validée puisque l"on vient de montrer queΦ(x)?0 donc f(x)?g(x) sur ]0 ;+∞[ or on avait montré quef(x)Finalement

Cfest bien toujours en dessous deCgsurR

b.Montrer queCfetCgont un unique point commun, notéA.

Solution:f(x)=g(x)??Φ(x)=0??x=1

A(1 ; 1) est donc l"unique point commun deCfetCg

c.Montrer qu"en ce pointA, ces deux courbes ont la même tangente.

Page 6

Solution :gest dérivable sur ]0 ;+∞[ comme composée de fonctions déri- vables sur ]0 ;+∞[. ?x?]0 ;+∞[ ,g?(x)=-e1-x alorsg?(1)=-1 orf?(1)=-1 Donc

CfetCgadmettent la même tangente enA

Partie C

1.Trouver une primitiveFde la fonctionfsurR.

Solution:?x?R,f(x)=-12?

-2xe1-x2? doncf= -1

2?u?eu?de plusfest continue surRcomme composée de fonctions

continues surR, elle y admet donc des primitives ?x?R,F(x)=-1

2e1-x2est une primitive def

2.En déduire la valeur de?

1 0? e1-x-xe1-x2? dx. Solution :Comme précédemment, on montre queG(x)=-e1-xest un primitive degsurR?1 0? e1-x-xe1-x2? dx=? 1

0?g(x)-f(x)?dx=?G(x)-F(x)?

1

0=(G(1)-F(1))-(G(0)-F(0))=

-1 2? -12e?

Finalement,?1

0? e1-x-xe1-x2? dx=1

2(e-1)

3.Interpréter graphiquement ce résultat.

Solution:Il s"agit de l"aire, en unité d"aire, de la partie de plan définie par?0?x?1 f(x)?y?g(x)

Cette aire est hachurée sur le graphique

Page 7

EXERCICE45 points

Candidats n"ayant pas suivi l"enseignement despécialité

ABCDEFGHest un cube d"arête égale

à 1.

L"espace est muni du repère ortho-

normé (D;--→DC,--→DA,--→DH).

Dans ce repère, on a :D(0 ; 0 ; 0),

C(1 ; 0 ; 0),A(0 ; 1 ; 0),H(0 ; 0 ; 1) et

E(0 ; 1 ; 1).

SoitIle milieu de [AB].

CC? BB? GG? FF

DD?AA?

HH ?EE JJ? II? NN? MM LL KK SoitPle plan parallèle au plan (BGE) et passant par le pointI. [CG], [GH], [HE] et [AE].

1. a.Montrer que le vecteur--→DFest normal au plan (BGE).

Solution:B(1 ; 1 ; 0) ,F(1 ; 1 ; 1) etG(1 ; 0 ; 1) BG((0 -1 1)) ,--→BE((-1 0 1)) et--→DF((111))

On a alors

--→BG·--→DF=0 et--→BE·--→DF=0 Donc --→DFest normal au plan (BGE) b.En déduire une équation cartésienne du planP. Solution:Pest parallèle à (BGE) donc ils ont même vecteur normal--→DF on a alorsP:x+y+z+d=0 orI?1

2; 1 ; 0?

?Pd"oùd=-32

Finalement

P:2x+2y+2z-3=0

2.Montrer que le pointNest le milieu du segment [AE].

Solution :Pest parallèle à (BGE) donc le plan (ABE) coupe ces deux plans sui- vant deux droites parallèles orP∩(ABE)=(IN) et (BGE)∩(ABE)=(BE) On en déduit que (BE) et (IN) sont parallèles orIest le milieu de [AB] donc d"après le théorème de la droite des milieux,

Nest le milieu de [AE]

3. a.Déterminer une représentation paramétrique de la droite (HB).

Page 8

Solution:--→HB((11

-1)) etH(0 ; 0 ; 1) donc(HB) :???????x=t y=t z=1-t(t?R) b.En déduire que la droite (HB) et le planPsont sécants en un pointTdont on précisera les coordonnées.

Solution:

Chercher les cordonnées de l"éventuel point d"intersection entre (HB) etP revient à résoudre ce système : ?x=t y=t z=1-t y=t z=1-t 2 y=1 2 z=1 2 (HB) etPsont sécants enT?12;12;12?

Remarque: ce point est le centre du cube

4.Calculer, en unités de volume, le volume du tétraèdreFBGE.

Solution:FBGEest une pyramide de baseFBGet de hauteurEF

EXERCICE45 points

Candidats ayant suivi l"enseignement despécialité

Les parties A et B sont indépendantes

Partie A

On considère l"équation suivante d"inconnuesxetyentiers relatifs :

7x-3y=1. (E)

1.Un algorithme incomplet est donné ci-dessous. Le recopier et le compléter, en

écrivant ses lignes manquantes (1) et (2) de manière à ce qu"il donne les solutions entières (x;y) de l"équation (E) vérifiant -5?x?10 et-5?y?10.

Page 9

Solution:

Variables : X est un nombre entier

Y est un nombre entier

Début : Pour X variant de-5 à 10

Pour Y variant de-5 à 10

Si 7X-3Y=1

Alors Afficher X et Y

Fin Si

Fin Pour

Fin Pour

Fin

2. a.Donner une solution particulière de l"équation (E).

Solution:(x;y)=(1 ; 2) est une solution particulière de l"équation (E) b.Déterminer l"ensemble des couples d"entiers relatifs solutions de l"équation (E).

Solution:?(x;y) solution de (E)

(1; 2) solution de (E)???7x-3y=1

7×1-3×2=1???7(x-1)-3(y-2)=0

(1; 2) solution de (E) Donc (x;y) solution de (E) si et seulement si 7(x-1)=3(y-2) On en déduit que 7 divise 3(y-2) or 7 et 3 sont premiers entre eux donc, d"après le théorème de Gauss, 7 divisey-2 Alorsil existeunentierrelatifktelquey-2=7k,on endéduit7(x-1)=21k soitx-1=3k

Finalement

les solutions de (E) sont les couples (x;y) de la forme (1+3k; 2+7k) (k?Z) tion (E) tels que -5?x?10 et-5?y?10. Solution :Pourk< -2 etk>3 les valeurs trouvées pourxn"appartiennent pas à [-5 ; 10] Pourk<-1etk>1lesvaleurstrouvéespouryn"appartiennentpasà[-5; 10] Finalement, il fautk?{-1 ; 0 ; 1} et on obtient donc trois couples solution : (-2 ;-5) , (1 ; 2) et (4 ; 9)

Partie B

Le plan complexe est rapporté à un repère orthonormé?

O ;-→u,-→v?

On considère la droiteDd"équation

7x-3y-1=0

Page 10

On définie la suite (An) de points du plan de coordonnées (xn:yn) vérifiant pour toutn entier naturel : ?x0=1 y

0=2et?

xn+1= -13

2xn+3yn

y n+1= -35

2xn+8yn

1.On noteMla matrice((

-13 23
-35 28))
. Pour tout entier natureln, on pose X n=?xn y n? a.Montrer que, pour tout entier natureln,Xn+1=MXn.

Solution:

?xn+1= -13

2xn+3yn

y n+1= -35

2xn+8yn???xn+1

y n+1? -13 23
-35 28?

×?xn

y n?

On a donc bien

?n?N,Xn+1=MXn b.Sans justifier, exprimer pour tout entier natureln,Xnen fonction deMnet X 0.

Solution:?n?N,Xn=MnX0

2.On considère la matriceP=?-2-3

-5-7? et on admet que la matrice inverse deP, notéeP-1, est définie parP-1=?7-3 -5 2? a.Vérifier queP-1MPest une matrice diagonaleDque l"on précisera.

Solution:P-1MP=?7-3

-5 2? -1323 -35 28?

×?-2-3

-5-7? =?7-3 -521?

×?-2-3

-5-7? ?1 001quotesdbs_dbs49.pdfusesText_49