[PDF] [PDF] Corrigé

configuration électronique du titane Il faut citer la règle de Klechkowski : « L' énergie des orbitales atomiques est une fonction croissante de la somme (n+l) A



Previous PDF Next PDF





[PDF] 1 Propriétés du métal 111 Configuration électronique 112

Étude des propriétés des ions ferreux et ferriques 2 1 Les complexes du fer 2 1 1 Structure Voici ci-dessous un 



[PDF] CCP Chimie 2 PC 2012 — Corrigé

Dans le cas des ions Fe2+ et Fe3+ on commence par écrire la configuration électronique du fer [Fe]: 1s2 2s2 2p6 3s2 3p6 4s2 3d6 On rétablit l'ordre des 



[PDF] Atomes polyélectroniques - UNF3S

➢valable pour la configuration électronique dans l'état fondamental ➢ordre croissant Fe 2+ et 26 Fe 3+ Fer Fe → Z=26 → 1s2 2s2 2p6 3s2 3p6 3d6 4s2



[PDF] Règles de remplissage pour les atomes polyélectroniques

Il s'agit d'une règle rigoureuse, sans exception aucune Règle de Hund : pour une sous-couche donnée, la configuration électronique de plus basse énergie est 



[PDF] Corrigé

configuration électronique du titane Il faut citer la règle de Klechkowski : « L' énergie des orbitales atomiques est une fonction croissante de la somme (n+l) A



[PDF] Chapitre 3 :Structure électronique des atomes

Chapitre 3 : Structure électronique des atomes Structure de la matière Page 1 sur 5 I Nombres quantiques A) Origine théorique La résolution de l'équation de  



[PDF] Structure électronique des atomes - Étienne Thibierge

12 déc 2018 · Établir la configuration électronique d'un atome dans son état fondamental Remarque : Outre Fe2+, le fer forme également l'ion Fe3+ en 



[PDF] La configuration électronique, les cases quantiques et les

La configuration électronique est une méthode d'identifier la position ou le lieu de chaque électron par rapport à son niveau et son sous-niveau d'énergie Alors,  



[PDF] Chimie Inorganique - Département de Chimie

Dans ce complexe, on est en présence de fer au degré d'oxydation formel +3, noté Fe (III) ou II Structure électronique : le modèle du champ cristallin 1) Levée 

[PDF] configuration electronique carbone

[PDF] configuration electronique chlore

[PDF] configuration électronique des atomes pdf

[PDF] règle de klechkowski explication simple

[PDF] nombres quantiques exercices corrigés

[PDF] les nombres quantiques exercices corrigés pdf

[PDF] exercices sur configuration électronique d un atome

[PDF] représentation de lewis exercices pdf

[PDF] règle de klechkowski exception

[PDF] configuration electronique ion

[PDF] reséau informatique pdf

[PDF] reséau informatique ppt

[PDF] reséau informatique cours complet pdf

[PDF] reséau informatique cours ppt

[PDF] projet maintenance informatique pdf

[PDF] Corrigé

1/16 Devoir Surveillé n° 3lejeudi15décembre2016CorrigéDuréedudevoir:2heuresL'utilisation de la calculatrice n'est pas autorisée ***************** EXERCICE1:NANOPARTICULESETOXYDEDETITANE/28POINTSPropriétésatomiquesdutitaneVoicilehautdelapagedusitewikipédiaconsacréeautitane: Le titane est l'élément de numéro atomique Z = 22, de symbole Ti. C'est un métal de transition léger, résistant, d'un aspect blanc métallique, et qui résiste à la corrosion. Le titane est principalement utilisé dans les alliages légers et résistants, et son oxyde, TiO2, est utilisé comme pigment blanc. On trouve cet élément dans de nombreux minerais mais ses principales sources sont le rutile et l'anastase. Il appartient au groupe des titanes avec le zirconium (Zr), le hafnium (Hf) et le ruthertfordium (Rf). Les propriétés industriellement intéressantes du titane sont sa résistance à l'érosion et au feu, la biocompatibilité, mais aussi ses propriétés mécaniques (résistance, ductilité, fatigue, etc,...) qui permettent notamment de façonner des pièces fines et légères comme artticles de sport, mais aussi des prothèses orthopédiques. Commençonsparétudierunatomedetitane,isolédanssonétatfondamental.1) Nommereténoncerlarèglequipermetd'obtenirl'ordrederemplissagedesorbitalesatomiquespourobtenirlaconf igurationélec troniqued'unatome.En dédui relaconfigurationélectroniquedutitane.IlfautciterlarègledeKlechkowski:"L'énergiedesorbitalesatomiquesestunefonctioncroissantedelasomme(n+l).A(n+l)donné,l'énergieestunefonctioncroissanteden».

2/16 Dansunatomepolyélectrnoque,lesOAsontrempliesparvaleurd'énergiecroissante,celapermetdedécrirelaconfigurationélectroniquefondamentaledel'atomedetitane:1s22s22p63s23p64s23d2soit:1s22s22p63s23p63d24s2ouencore:[18Ar]3d24s22) Combienunatomedetitanepossède-t-ild'électronsdevalence?Lesquels?Lesélectronsdevalencesontceuxassociésaunombrequantiquenprincipalleplusélevé,etceuxdessous-couches(n-1)dou(n-2)fencoursderemplissage.Ainsi,letitanepossède4électronsdevalence:3d24s23) Combienunatomedetitanepossède-t-ild'électronscélibataires?Justifierenenonçantlarègleutilisée.Les2électronsquipeuplentlasous-couche3doccupentseuls2OAdifférentes,doncilya2électronscélibatairesdansl'atomedetitane.C'estlarègledeHundquipréciseque:"LorsquedesélectronsdoiventoccuperlesOAd'unmêmeniveaud'énergiedégénéré,laconfigurationlaplusstableestobtenueenplaçantlemaximumd'électronsseulsdanschacunedesOAetdanslemêmeétatdespin».4) Proposerunensembledequadrupletsdenombresquantiques(n,l,mletms)quepourraientpossédersimultanémentlesélectronscélibatairesd'unatomedetitane(s'ilyaplusieurspossibilité,n'endonnerqu'uneàvotrechoix).Les2électronscélibatairessontdesélectrons3d:ilsontdoncles2mêmesnombresquantiquesnetl;ilssontdanslemêmeétatdespinetvontdoncdifférerparlavaleurdeleurnombrequantiquemagnétiqueml,quiprendrasesvaleursentre-2et+2.Desquatrupletspossiblessontdonc,parexemple:n=3;l=2;ml=2;ms=½etn=3;l=2;ml=1;ms=½n=3;l=2;ml=2;ms=½etn=3;l=2;ml=-2;ms=½n=3;l=2;ml=2;ms=-½etn=3;l=2;ml=1;ms=-½n=3;l=2;ml=0;ms=½etn=3;l=2;ml=1;ms=½...etc...5) Enoncerleprinciped'exclusiondePauli.Leprinciped'exclusiondePauliindiqueque:"Dansunatomepolyélectronique,deuxélectronsnepeuventpasavoirleur4nombresquantiqueségaux».6) Localiserletitanedansla classific ation:nu mérodepériode(c'estàdiredel igne),numérodecolonne,e njusti fiantavecprécision.Aqu elblocdelac lassification appartient-il?

3/16 Laconfigurationélectroniqueexternedutitaneseterminepar:3d24s2nmax=4doncilappartientàlaquatrièmepériode.Ellesetermi nepar:d2doncila ppartient àlasecondecolonnedublocdsoitlaquatrièmecolonnedelaclassification.D'où:Tisetrouveàl'intersectiondela4èmepériodeetdela4èmecolonne."Tiesten4x4».Nousl'avonsdit:Tiappartientaublocd.Unpeuplusloin,àlamêmepageWikipédia:Ontrouveletitanesouslaformede5isotopes:46Ti,47Ti,48Ti,49Ti,50Ti.Le48Tireprésentel'isotopemajoritaireavecuneabondancenaturellede73,8%.46Ti8,0%47Ti7,3%48Ti73,8%49Ti5,5%50Ti5,4%7) Qu'ontencomm un,pa rexemple,lesdeuxi sotopes48Tiet44Ti?Qu'est-cequi lesdifférencie?Donneruneréponsecourtemaistrèsclaire.Lesdeuxisotpoesontencommunlenuméroatomiqueetdonclenombredeprotondunoyau:ilsenpossèdent22etpossèdentaussi22électrons.Cequilesdifférencie?Lenombredeneutron:48Tienpossède(48-22)=26et44Tienpossède(44-22)=22.8) Préparerlecalculquipermetdecalculerlamasseatomiquedutitane,eng.mol-1.Lamassemolaires'obtientenajoutantlamassemolairedesisotopesmultipliéeparleurabondance:MTi= 8 x 46 + 7,3 x 47 + 73,8 x 48 + 5,5 x 49 + 5,4 x 50100M(Ti)=g.mol-1.LecorpssimpleDanslepremierextraitdespropriétéscitéesdutitane,ilestsignalésagrandeductilité.9) Rappelerladéfinitiondelaductilité.Rappelerlesprincipalespropriétésdesmétaux.Citerquelquesunesdespropriétésremarquablesdutitane.

4/16 Laductilitéestlapropriétéd'unmétaldepouvoirêtreétirersouslaformed'unfiltrèsfinsanscasser;ilpeutsedéformersansserompre.Propriétésdesmétaux:MalléablesetductilesOntunéclatmétalliqueSontdebonsconducteursthermiquesetélectriquesOntuneélectronégativitéfaibleetpeuventdonccéderunouplusieursélectrons,cesontdoncdesréducteurs.Ontuneconductivitéquidiminuelorsquelatempératureaugmente.Letitaneestléger,ilrésisteàlacorrosion,etestbiocompatibleparexemple.LezirconiumZrestsousletitanedanslaclassification,d'aprèscesite.10) Quelestlenuméroatomiqueduzirconium?Expliquer.TiapournuméroatomiqueZ=22etpourconfigurationexterne4s23d2.Sousletitane,Zrauralaconfigurationélectronique,supposéesansanomalie,5s24d2Nousauronsd oncremplielasous-couche3d,lasou s-couche5s,ldébu tdelasous -couche4d;po urcela,ilfaut 18électrons(8+ 6+2+2) donclenumér oatomique duzirconiumest:Z=22+18=40.Attention,çasecompliqueraitensuitepourl'élémentsouslezirconiumcarilfaudraiteffectivementtoujoursces18électronsMAISaussiles14delasous-couche4f.Lenumérodel'hafnium,Hf,sousZr,estdonc:40+18+14=72!LesmineraisLesnumérosatomiquesdeCa,deTi,etdeOsontrespectivement20,22donc,et8.11) Letitanepossèdedeuxionstrèscourants.Enexaminantsaconfigurationélectronique,identifierquelssontcesionsdutitane,enjustifiantclairementvotreréponse.Ecrirelaconfigurationélectroniquedecesdeuxions.TiapournuméroatomiqueZ=22etpourconfigurationexterne4s23d2.Onpeutfacilementimaginerqu'ilcèdeles2denombrequantiquenprincipalleplusélevé,soitses2électrons4spourdonnerl'ionTi2+:1s22s22p63s23p63d2ouencore:[18Ar]3d2Encédantaussises2électrons3d,ildeviendraitunionTi4+:1s22s22p63s23p6ouencore:[18Ar]

5/16 12) Enjustifiantvotreréponse,identifiertouslesionsprésentsdanslapérovskiteCaTiO3.Lecalci umestunalcalinoterre uxetdoncilc èdefacile mentses2électrons4spourdonnerl'ionCa2+.L'oxygènevafacilemen tgagn er2él ectronsafind'acquérirlac onfigurationsta blesemblableàcelledunéon(Z=10):ildonnel'ionoxydeO2-.Ainsilesionsprésentssont:Ca2+;O2-;etTi4+pouravoiruncristalneutre.LeTiO2estuncomposéchimiquementinerteàhautindicederéfraction,etquiprésenteuneactivitéphoto-catalytique.13) Rappelercequ'estuncatalyseur.Uncatalyseurestuneespècechimiquequivaaugmenterlavitessedelaréactioncarelleintervientaucoursde latransfo rmation;el leestdenouve auintacteà lafinde latransformation.Elleaugmentelavitessemaisnemodifieenrienlebilanfinal:onditqu'ellen'apasd'influencesurl'aspectthermodynamiquedelaréaction.LedioxydedetitaneTiO2estunsemi-conducteur.Soncomportementestdécritvialathéoriedesbandes,quiestunemodélisationdesvaleursdel'énergiequepeuventprendrelesélectronsàl'intérieurdusemi-conducteur.Cesélectronsnepeuventprendrequedesénergiescomprisesdanscertainsintervalles,lesquelssontséparéspardesbandesd'énergie"interdites».Danslecasd'unsemi-conducteurcommeTiO2,le"gap»delabandeinterdite,c'estàdirel'écartentrelabandedevalencequicontientlesélectronsetlabandedeconductiondanslaquellecesélectronspeuventêtrepromus,estassezpetit:ilvaut3,45eV.14) Quelleestlalongueurd'onde λdelaradiationcapabled'apporterces3,45eVàl'électronpourlepromouvoir?Vousferezuncalculapproximatif.Aquelledomaineduspectreélectromagnétiqueappartientcetteradiation?Donnéespourcettequestion:• Céléritédelalumière:c=3,00.108m.s-1• ConstantedePlanck:h=6,62.10-34J.s• 1eV=1,6.10-19Jλ

7/16 Lebilanglobaldelaréactionest:RH+O2=ROOHL'approximationdesétatsquasistationnair es(AEQS) peutêtreappli quéeauxintermédairesréactionnelsR•etROO•.16) Enappliquantl'AEQSauxinte rmédiairescités,ét ablirquelavitessed'a utoxydation v=-d[RH]/dtestdupremierordreenRHetnedépendpasdelaconcentrationendioxygènelorsquev1estnégligeabledevantlesautresprocessus.Appliquonsl'AEQSaux2IR:í µ[í µâˆ™]í µí µ=0=í µ!- í µ!í µâˆ™í µ!+ í µ!í µí µí µâˆ™í µí µí µ[í µí µí µâˆ™]í µí µ=0= í µ!í µâˆ™í µ!- í µ!í µí µí µâˆ™í µí µ-2í µ!í µí µí µâˆ™!AEQSglobale:0= í µ!-2í µ!í µí µí µâˆ™!Alors:í µí µí µâˆ™=í µ!2í µ!ExprimonsparailleurslavitessededisparitiondeRH:í µ= -í µ[í µí µ]í µí µ=í µ!+ í µ!í µí µí µâˆ™í µí µSoit:í µ= -í µ[í µí µ]í µí µ=í µ!+ í µ!í µ!2í µ!í µí µSií µ!≪ í µ!!!!!!í µí µalors:í µ= -![!"]!"= í µ!!!!!!í µí µCommev1estconstante,laréactionestbiend'ordre1parrapportàRHdanscecas,etellenedépendpasdelaconcentrationendioxygène.Enfa it,celasignifie quel'étape(1)i nitielaréactionetqu'nes uitenousav onsuneséquenceferméede2étap esoùestIRforméest consommé etrég énéréetcetteséquencepeutseproduireu ntrèstrèsgrandno mbred efoisindépendemment desétapes(1)et(4).

8/16 EXERCICE2:AUTOURDESCOMPOSESHALOGENES/17POINTSGénéralitéssurlafamilledeshalogène s:F (fluor ),Cl(chlore),Br(brome),I(iode)maisaussiAt(astate)etTs(Tennessine).1) Dansletableauà18colonnes,rappeleroùsontsituésleshalogènes.Leshalogènes appartiennentàl'avant dernièrecolonne,lacolonnen°17,delaclassification,suivantlanumérotationdel'IUPAC.2) Ecrirelaconfigurationélectroniquefondamentaledel'atomed'iode,I,qui,onlerappelle,estlequatrièmedeshalogènes.Quelssontsesélectronsdevalence?L'iodeestlequatrièmehalogène.Iln'yapasd'halogènedanslapremièrepériodedonclequatrièmehalogèneestdansla5èmepériode.Commelaconfigurationélectroniqueexternedeshalogènessetermineenns2np5,laconfigurationdel'iodeestdonc:1s22s2............jusqu'à...........5s25p5soit:1s22s22p63s23p64s23d104p65s24d105p51s22s22p63s23p64s23d104p65s24d105p5ou,enréordonnantlesélectronsparcouche:1s22s22p63s23p63d104s24p64d105s25p5L'iodepossède7électronsdevalence:5s25p5Rem:lenuméroatomiquedel'iodeestdoncZ=53.3) Quellesentitésmicroscopiquestrouvent-t-ondanslescorpssimplesdeshalogènesetpourquoilesatomess'associent-ilsainsi?Lesentitésmicroscopiquesquel'ontrouvedanslescorpssimplessontlesmoléculesX2.Lesatomess'associentainsiparcequepossédant7électronsdevalence,l'associationavecuneaut remoléculel eurpermetde réaliserleuroctetd'électrons,cequieststabilisantetleurconfèreunegrandestabilité.

9/16 4) CommentexpliquerlastabilitédesionshalogénureX-?Avecunélectronsupplémentaire,leshalogènessontprésentssouslaformestabledesionshalognéu rescarilsontainsiuneconfiguration électroniquens2np6particulièrementstable,commelesatomesdesgazrares.5) Donnerladéfinitionqualitativedel'électronégativitéχd'unélémentchimique.Commentvariel'électr onégativitédesélémentsenfonctiondelaplacequ 'ilsoccup entdanslaclassificationpériodique?Quelestl'élémentleplusélectronégatif?L'électronégativitéd'unélémentchimiquetraduitl'aptituded'unatomedelui-ciàattireràluilesélectronsdesliaisonsauxquelsilparticipedansunédificepolyatomique.6) Aquidoit-onuneéchelled'électronégativitécourammentutiliséeenchimie?C'estl'échelledePauling,baséesurlesénergiesdeliaison,quiesttrèsutiliséeenchimie,etparticulièrementenchimieorganique.Ilexisteuneautreéchelled'électronégativité,l'échelledeAllred-Rochow,moinsutiliséparleschimistescependant.Danscette échelle,onsuppose quel'électronégativitédel' élémen testd'autantplusgrandequelechampélectrostatiqueàlapériphériedel'atomeestplusgrand,etquecechampestproportionnelàZ*/r2,Z*étantlachargenucléaireeffectiveressentieàlapériphérieetrlerayoncovalentdel'atome.7) Commentvarielerayoncovalentdanslacolonnedeshalogènes?Danslacolonnedeshalogènes,lerayoncovalentaugmentedeheutenbas:r(F)

10/16 d'écranindividuelσidechaqueélectronpeutêtreévaluéàpartirdesrèglesdeSlater.Pourunélectronoccupantuneorbitaleatomiquensounp(n>1),l'écrantagedûàunélectronsituédansuneorbitaleatomiquedenombrequantiqueprincipaln'est:n'nσi10,850,350Tablesdeconstantesenfonctiondunombrequantiqueprincipaln9) Déterminerlachargenucléaire effectivepourunélect ro ndevalencedechlore.Conclusion?Configurationdel'atomedechlore:1s22s22p63s23p5Ilya7électronsdevalence:1s22s22p63s23p5Ilyaalorscetélectronparmiles7etles6autres:1s22s22p6(3sou3p)6+1Effetd'écranexercéparles6électrons(3sou3p)=6x0,35Effetd'écranexercéparles8électrons(2sou2p)=8x0,85Effetd'écranexercéparles2électrons(1s)=2x1Constanted'écrantotal:σ=6x0,35+8x0,85+2x1=10,9D'où,lachargenucléaireeffectiveressentieparunélectrondevalenceduchloreest:Z*=17-10,9=6,1Elleestrelativementfaible,comparéeà17:ellereprésenteseulementunpeuplusd'1/3delachargeréelle.Danslafamilledeshalogènes,lebrome...Lebromeappartientàlaquatrièmepériodedutableau.10) Quellelaconfigurationélectroniquedevalencedel'atomedebrome?Lebrome estaudessusde idanslaclass ificati on;sa configura tionélectroniquedevalenceest:4s24p5Ledibrom en'existepasàl'étatnaturel.Ilestsynthéti séàparti rdel'oxy dationdesionsbromuresBr-contenusdansl'eaudemerparledichlore.Danslesconditionsnormalesdetempératureetdepression,ledibromeestliquide.11) Dansquelétatphysiquesontledichloreetlediiodedanslesmêmesconditions?

11/16 Ledichloreestungazverdâtreetlediiodeestunsolideviolet,auxrefletsbrillants.12) ProposerleschémadeLewisdelamoléculededibrome.Br2:2x7=1414/2=7doublets:Lebromeexistedansunemultitudedestructuresdifférentes.Parexemple:BrO-,BrF5,PBr3ouBrO4-.13) ProposerunestrcturedeLewispources4espèces.EspèceNombred'é-devalenceNombrededoubletsSchémasdeLewisBrO-147BrF54221PBr32613BrO4-3216Composéshalogénésdelacolonne15(N,P,As)NI3estuncomposétrèsinstablemaisquinéanmoinsexisteetpeutêtrepréparéavecd'infiniesprécautionsaulaboratoire.14) ProposerunereprésentationdeLewisdecettemolécule(N:Z=7).

12/16 PBr32613NI3261315) Pourqueller aisonlescompos éshalogénésduphosphore( Z=15)oudel'arsenic(Z=33),situésdanslamêmecolonnequel'azoteN,peuvent-ilsconduireàdesédificespossédant5ou6liaisonscovalentesalorsquecesmêmesédificesnepeuventpasêtreobtenusavecl'azote?Nnepossèdepasd'orbitalesatomiques"d»susceptiblesd'accueillirdesélectrons,alorsquePetAsenpossèdent(respectivementlesOA3det4d):PetAssonthypervalents,etpasN.Ilspeuventdoncavoirplusde8électronsautourd'eux.EXERCICE3:LARUEEVERSLENANO-OR/9POINTSL'orapournuméroatomiqueZ=79.L'oradespropriétéstrèsdifférentesdesautresmétauxdelaclassificationpériodique.Parexemple,sacouleurcaractéristique,jaune,ledistinguedesmétauxquil'entourent(Pd,Ag,Cd,Pt,Hg)lesquelsprésententtousunaspectargenté.Deplus,l'orpossèdequelquespropriétésexceptionnelles:• l'élémentorestlemétalleplusélectronégatifdanslaclassificationdePAULINGavecuneélectronégativitéde2,4;• l'orestfacilementréduit;• lesvapeursd'orsontconstituéesdemoléculesdiatomiquesdontl'énergiededissociationestélevée(221kJ.mol-1)etbienplusélevéequecellesdenombreusesmoléculesdiatomiquesnonmétalliques(parexempleI2);L'ensembledesespropriétésfontainsidel'orunmétaluniquedanslaclassificationpériodique.Nousallonsessayerdedéterminerdanscettepartiequelquescausesdeceparticularisme.1) Rappelerlaconfigurationélectroniquedel'atomed'ordanssonétatfondamentalensupposantquel'orvérifielarègledeKlechkowski.

13/16 Sansanomalie,laconfigurationélectroniquefondamentaledel'atomed'orest:1s22s22p63s23p64s23d104p65s24d105p66s24f145d9ou,enréordonnantlesélectronsparcouche:1s22s22p63s23p63d104s24p64d104d145s25p65d96s22) Enfa it,l'orprésenteune anomalie:pr oposerlaconfigurationélec troniquel aplusprobable,enjustifiantbrièvementvotreréponse.Lasou s-couche5dseraco mplèteav ecunélectronde plusdoncl'anomaliees tcertainementledéplacementd'unélectrondelasous-couche6sverslasous-couche5d,alorspleine,cequieststabilisant.Configurationréelle:1s22s22p63s23p64s23d104p65s24d105p66s14f145d10ou,enréordonnantlesélectronsparcouche:1s22s22p63s23p63d104s24p64d104f145s25p65d106s13) Quelleestainsilaconfigurationélectroniquedel'étatfondamentaldel'ionAu+?Configurationdel'ionAu+(attendue):1s22s22p63s23p63d104s24p64d104f145s25p65d10Configurationdel'anionAu-(quipeutexister,cequiestrarechezlesmétaux):1s22s22p63s23p63d104s24p64d104f145s25p65d106s24) Citerdeuxélémen tsquiontun eélectronégativitétrèsproc hedecell edel'or, dontl'électronégativitéestanormalementélevéepourunmétal.Citonsl'hydrogèneH:χP(H)=2,20CitonslecarboneC:χP(C)=2,55Dufaitde sesprop riétéséle ctroniques, optiquesetchimiquesparticulièr es,lesnanoparticulesd'orconstituentunsujetderecherchecontemporaintrèsactif.Enfait,les

14/16 nanoparticulesd'orsontutiliséesdepuisl'Antiquitécomm ecolorantduverreoudecéramiques(cf.parexemplelepourpredeCassius).Unedesconséquencesdelapetitetailledecesparticulesd'orestqueleurcouleurvarieavecleurtaille.Nousallonsdanscequisuitnousintéresseràuneautrepropriétéquiestfonctiondeceparamètre:l'activitécatalytiquedel'or.Rôle des nanoparticules d'or dans les pots catalytiques L'or, qui est le métal le plus noble, a longtemps été considéré comme catalytiquement inactif. C'est en 1987 que le groupe du Dr. Haruta découvre les propriétés catalytiques tout à fait remarquables de l'or dans la réaction d'oxydation de CO (CO + ½O2 → CO2) à basse température, entre 25 et 70°C, réaction qu'aucun autre métal n'était capable de catalyser à de telles températures. La clé de cette découverte fut la capacit é de ce groupe à prépar er des nanopart icules d'or, supportées sur des oxydes réductibles ( TiO2, Fe 2O3), grâce à la mise au point de méthod es de préparatio n (co-précipitation et dépôt-précipitation) autres que les méthodes classi ques d'imprégnation util isées jusqu'alors. [...]. Les nanoparticules d'or permettent également la réduction des NOx en diazote. 5) EcrirelaconfigurationélectroniquefondamentaledeC(Z=6)etO(Z=8).C:1s22s22p2O:1s22s22p46) ProposerleschémadeLewisdeCOetceluideCO2enrespectantlarègledel'octet.EspèceNombred'é-devalenceNombrededoubletsSchémasdeLewisCO105CO2168NOx désigne des oxydes d'azote, comme NO ou NO2. 7) ProposerunschémadeLewispourlamoléculeNO2.Commentappelle-t-onuneespècetellequeNO2?Quelleestsapropriétémagnétique?EspèceNombred'é-devalenceNombrededoubletsSchémasdeLewisNO2178doubletset1électronIlfautsurtouts'assurerqu'aucunatomenesoitentourédeplusde8électrons

15/16 D'une manière générale, l'efficacité des nanoparticules en catalyse provient en partie de leur très grande surfac e utile par rapport à leur volume. Par ailleurs, les nanopar ticules d'or sont économiquement plus intéressantes que le platine qui coûte très cher et qui est moins abondant. Document 1 : L'or en catalyse : influence de la température, du support et de la quantité et de la taille des clusters Un cluster d'or est une nanoparticule d'or. Document 1 : L'or en catalyse : influence de la température, et du support www.theses.ulaval.ca/2008/25081/25081.pdf Le taux de conversion correspond au pourcentage de réactif consommé par une transformation chimique. Document 2 : L'or en catalyse : influence de la quantité et de la taille des clusters L'oxydation de CO n'a pas lieu sur or massif, par contre si l'or est dispersé sur un support sous forme de nanoparticules, une activité extraordinaire a été observée. Valden et ses collaborateurs ont étudié la cinétique de l'oxydation du CO à basse température sur des clusters d'or de différentes tailles supportés sur titane en couches minces. Ils ont observé une dépendance forte du TOF et de l'énergie d'activation avec la taille des clusters d'or.

16/16 8) D'aprèscesdeuxdocuments,quellessontlesconditionspouravoirdesnanoparticulesayantlameilleureactivitécatalytique?Ilsembleraitquelesconditionsoptimalessoient:2,4%de Audépos ésurTiO2pouravoir unebonneactivitécata lytiq ueàbasse températureDesclustersd'unetaillevoisinede3,5nmpouravoirunTOFmaximal.Findel'énoncéTOF=TurnOverFrequency:nombredemoléculesconvertiesparunitédetempsetparsiteactif

quotesdbs_dbs31.pdfusesText_37