[PDF] [PDF] LIMITES DES FONCTIONS (Partie 2) - maths et tiques

Méthode : Déterminer la limite d'une fonction composée La fonction exponentielle étant strictement croissante, on a également, pour tout > † : J 



Previous PDF Next PDF





[PDF] LIMITES DES FONCTIONS (Partie 2) - maths et tiques

Méthode : Déterminer la limite d'une fonction composée La fonction exponentielle étant strictement croissante, on a également, pour tout > † : J 



[PDF] Croissance comparée des fonctions logarithmes, puissances et

la croissance des fonctions logarithmes, exponentielles et puissances au théor `emes sur la limite d'un produit et la limite d'une fonction composée, lim x→+∞



[PDF] La fonction exponentielle - Maths-francefr

Le chapitre sur la fonction exponentielle est quasiment indissociable du 1 + 0 = 1 puis, d'après le théorème de dérivation des fonctions composées, pour tout La limite de ex en −∞ se déduit de la limite de ex en +∞ de la façon suivante :



[PDF] Limites et exponentielle

eX = 0 (composée, exponentielle) Donc la recherche de la limite de f se présente sous la forme indéterminée : « ∞ × 0 » (avec la fonction f précédente)



[PDF] Fonction exponentielle

La fonction exponentielle a pour limite +∞ en +∞ : lim x→+∞ e Soit u une fonction dérivable sur un intervalle I, alors la fonction composée f = eu est dérivable



[PDF] Fonction exponentielle - Nathalie Daval - Free

II 1 Limite aux bornes Définition 1 La fonction exponentielle, est la fonction définie sur R par exp(x) = ex, ex étant l'unique nombre réel positif dont le Ce point est une conséquence de la dérivation des fonctions composées : On dérive la 



[PDF] La fonction exponentielle

Il faut connaître les limites des fonctions de référence (fonctions carré, cube, racine Soit f la fonction définie sur un intervalle I comme composée des fonctions



[PDF] T ES Fonction exponentielle

Le fonction exponentielle, notée exp, est la fonction 2) Limites en +õ et en -õ D'après le théorème de dérivation des fonctions composées, puisque f(x) = ex 



[PDF] La fonction exponentielle Problème à résoudre I - Normale Sup

Cette fonction est appelée exponentielle et notée exp Démonstration plus ϕ est un produit de la forme u × v, où v est une fonction composée : ϕ (x) = f (x)f(−x ) + Pour la preuve des limites aux bornes, voir le paragraphe 5) Les preuves 



[PDF] Cours de Terminale S Analyse - Lycée Pierre Gilles de Gennes

13 avr 2015 · Limite d'une suite géométrique 10 Composée d'une fonction de référence avec une fonction 16 III - La fonction exponentielle, croissance comparée

[PDF] limite d'une fonction composée démonstration

[PDF] trouver ses marques

[PDF] trouver ses repères définition

[PDF] prendre ses marques définition

[PDF] prendre ses repères definition

[PDF] reprendre ses marques expression

[PDF] soit la fonction f définie sur r par f(x) = x/(1+x2)

[PDF] soit f la fonction définie sur r par f(x)=x^3

[PDF] soit f la fonction définie sur r par f x )= x ln x 2 1

[PDF] soit f la fonction définie sur r par f(x)=x-ln(x2+1)

[PDF] slogans publicitaires cultes

[PDF] soit f la fonction définie sur r+ par f(x)=3x-1/x+1

[PDF] le sol est une ressource fragile

[PDF] soit f la fonction définie sur r par f(x)=2x

[PDF] menaces qui pèsent sur le sol

1

LIMITES DES FONCTIONS - Chapitre 2/2

Tout le cours en vidéo : https://youtu.be/YPwJyYDsmxM

Partie 1 : Limite d'une fonction composée

Méthode : Déterminer la limite d'une fonction composée

Vidéo https://youtu.be/DNU1M3Ii76k

Soit la fonction í µ définie sur !

;+∞! par : í µ 2- 1 Calculer la limite de la fonction í µ en +∞.

Correction

On a : lim

1 =0, donc lim 2- 1 =2 Donc, comme limite d'une fonction composée : lim 2- 1 2 En effet, si í µâ†’+∞, on a : í µ=2- 1 →2 et donc : lim 2.

Partie 2 : Limites et comparaisons

1) Théorèmes de comparaison

Théorèmes : Soit í µ et í µ deux fonctions définies sur un intervalle í µ= - Si pour tout í µ de í µ, on a : 9 lim alors lim =+∞ (Fig.1) - Si pour tout í µ de í µ, on a 9 lim alors lim =-∞ (Fig.2) Remarque : On obtient des théorèmes analogues en -∞.

Figure 1

Par abus de langage, on

pourrait dire que la fonction í µ pousse la fonction í µ vers +∞ pour des valeurs de í µ suffisamment grandes.

Figure 2

2

Démonstration dans le cas de la figure 1 :

lim =+∞ donc tout intervalle , í µ réel, contient toutes les valeurs de í µ(í µ) dès que í µ est suffisamment grand, soit : í µ Donc dès que í µ est suffisamment grand, on a : í µ

Et donc lim

2) Théorème d'encadrement

Théorème des gendarmes :

Soit í µ, í µ et â„Ž trois fonctions définies sur un intervalle í µ=

Si pour tout í µ de í µ, on a : >

lim lim alors lim Remarque : On obtient un théorème analogue en -∞.

Par abus de langage, on pourrait dire que les fonctions í µ et â„Ž (les gendarmes) se resserrent

autour de la fonction í µ pour des valeurs de í µ suffisamment grandes pour la faire tendre vers

la même limite. Ce théorème est également appelé le théorème du sandwich. Méthode : Utiliser les théorèmes de comparaison et d'encadrement

Vidéo https://youtu.be/OAtkpYMdu7Y

Vidéo https://youtu.be/Eo1jvPphja0

Calculer : 1) lim

í µ+siní µ 2) lim í µcosí µ 2 +1 3

Correction

1) • lim

siní µ n'existe pas. Donc sous la forme donnée, la limite cherchée est indéterminée.

Levons l'indétermination :

•lim í µ-1=+∞ donc d'après le théorème de comparaison : lim í µ+siní µ=+∞

2) • lim

cosí µ n'existe pas. Donc sous la forme donnée, la limite cherchée est indéterminée.

Levons l'indétermination :

Et donc :

+1 í µcos(í µ) +1 +1 +1 F G 1 lim 1 =0 donc lim 1

Et donc : lim

1 1 =0, comme limite d'un quotient.

On a donc :lim

2 +1 =lim 2 +1 =0 D'après le théorème des gendarmes, on a : lim í µcos(í µ) 2 +1 =0.

Partie 3 : Cas de la fonction exponentielle

1) Limites aux bornes

Propriétés :

lim =+∞ et lim =0

Démonstration au programme :

Vidéo https://youtu.be/DDqgEz1Id2s

- La suite est une suite géométrique de raison í µ>1. 4

Donc, on a : lim

Si on prend un réel í µ quelconque (aussi grand que l'on veut), il existe un rang í µ

à partir

duquel tous les termes de la suite dépassent í µ, soit : í µ La fonction exponentielle étant strictement croissante, on a également, pour tout

Donc, pour tout í µ>í µ

, on a : í µ

Ainsi, tout intervalle

contient toutes les valeurs de í µ , dès que í µ est suffisamment grand.

Soit : lim

-lim =lim =lim , en posant í µ=-í µ

Or, lim

=+∞, donc : lim =0, comme limite d'un quotient.

Soit : lim

=0. Méthode : Déterminer la limite d'une fonction contenant des exponentiels

Vidéo https://youtu.be/f5i_u8XVMfc

Calculer les limites suivantes :

a) lim b) lim 1

Correction

a) lim -3í µ=-∞ • Donc, comme limite d'une fonction composée : lim =0 En effet, si í µâ†’+∞, on a : í µ=-3í µâ†’-∞ et donc : lim =0. • lim • Comme limite d'une somme : lim b) lim 1 =0, donc : lim 1- 1 =1 Donc, comme limite d'une fonction composée : lim

2) Croissance comparée des fonctions exponentielles et puissances

Exemple :

Observons la fonction exponentielle et la fonction puissance í µâŸ¼í µ dans différentes fenêtres graphiques. 5 Dans cette première fenêtre, la fonction puissance semble l'emporter devant la fonction exponentielle. Mais on constate que pour í µ suffisamment grand, la fonction exponentielle dépasse la fonction puissance í µâŸ¼í µ Remarque : Dans le cas de limites infinies, la fonction exponentielle impose sa limite devant les fonctions puissances. Sa croissance est plus rapide.

Propriétés (croissances comparées) :

a) lim =+∞ et pour tout entier í µ, lim b) lim =0 et pour tout entier í µ, lim =0

Démonstration au programme du a :

Vidéo https://youtu.be/_re6fVWD4b0

- On pose í µ

On a : í µ

6 On calcule la dérivée de la dérivée í µ -1.

Et on note í µ

-1

Pour tout í µ strictement positif, í µ

-1>0.

On dresse alors le tableau de variations :

On en déduit que pour tout í µ strictement positif, í µ >0 et donc í µ

Soit encore :

Comme lim

2 =+∞, on en déduit par comparaison de limites que lim - Dans le cas général, on a :

Fí µ

G =N O =N 1 O

Or : lim

=+∞ car on a vu que lim

Donc : lim

=+∞, car í µ est positif.

Et donc lim

Q R =+∞, comme produit de í µ limites infinies.

Soit : lim

Méthode : Calculer une limite par croissance comparée

Vidéo https://youtu.be/GoLYLTZFaz0

Calculer la limite suivante : lim

2

Correction

Le dénominateur comprend une forme indéterminée de type "∞-∞".

Levons l'indétermination :

1+ 1- 1+ 1- 7 Par croissance comparée : lim =+∞ et de même : lim 2

Donc, comme inverse de limites : lim

=lim 2 =0, donc limquotesdbs_dbs45.pdfusesText_45