[PDF] Fourier Series - School of Mathematics and Natural Sciences

Cité 12 fois — and applications that continue to develop right up to the present While the original theory of Fourier series 



Previous PDF Next PDF





Fourier Series, Fourier Transform and their Applications to

Cité 34 fois — mathematics but even an advanced researcher can find here very useful information ter 13) Many applications of the trigonometric Fourier series to the one-dimensional heat, wave 



On Application of Fourier Series - Research India Publications

The Fourier series are used in the study of periodical movements, acoustics, electrodynamics, optics, 





Fourier Series - School of Mathematics and Natural Sciences

Cité 12 fois — and applications that continue to develop right up to the present While the original theory of Fourier series 



Fourier Transform - Stanford Engineering Everywhere

rier Transform and its Applications Finally, I have to mention that in the purely mathematical



An Application of Fourier Series

n (where the sum is over odd n only) Step 2(a): Since each term in the Fourier series is a sine term 



pdf AN INTRODUCTION TO FOURIER SERIES AND THEIR APPLICATIONS

AN INTRODUCTION TO FOURIER SERIES AND THEIR APPLICATIONS MAHNAV PETERSEN Abstract In this expository paper we introduce the concept of Fourier se- ries and discuss some of their many applications to mathematics

[PDF] application of newton raphson method ppt

[PDF] application of regular languages in automata

[PDF] application of z transform in mathematics

[PDF] applied information and communication technology (9713) past papers

[PDF] apprendre à conduire à 60 ans

[PDF] apprendre a conduire a son fils

[PDF] apprendre a conduire en filière libre

[PDF] apprendre à conduire en ligne

[PDF] apprendre a conduire en ligne gratuitement

[PDF] apprendre a conduire un scooter 125

[PDF] apprendre a conduire un tracteur agricole

[PDF] apprendre à conduire un véhicule

[PDF] apprendre a danser le danza kuduro

[PDF] apprendre a eduquer stress

[PDF] apprendre a grimper dans les arbres

AcademicPress

FourierSeries

JamesS.Walker

DepartmentofMathematics

UniversityofWisconsin-EauClaire

EauClaire,WI54702-4004

Phone:715-836-3301

Fax:715-836-2924

e-mail:walkerjs@uwec.edu 1

I.Introduction

II.Historicalbackground

III.DefinitionofFourierseries

IV.ConvergenceofFourierseries

V.Convergenceinnorm

VI.SummabilityofFourierseries

VII.GeneralizedFourierseries

VIII.DiscreteFourierseries

IX.Conclusion

GLOSSARY

Boundedvariation:Afunction

,theinequality? ???????is ?????).Examples:The

Continuousfunction:If

?,thenthefunction ?iscontinuous atthepoint ?.Suchapointiscalledacontinuitypointfor ?.Afunctionwhichis

Lebesguemeasurezero:Aset

zeroif,foreach ?????,thereexistsacollection? ?ofopenintervalssuch that ???and? ??????.Examples:Allfinitesets,andall

Oddandevenfunctions:Afunction

?isoddif ?forall ?inits domain.Afunction ?isevenif ?forall ?initsdomain.

One-sidedlimits:

???and ?denotelimitsof ??????as ?tendsto ?fromthe leftandright,respectively.

Periodicfunction:Afunction

?holdsforall ?.Example: ?isperiodicwithperiod

I.Introduction

Fourierseries3

andlocaltrigonometricanalysis.

II.Historicalbackground

?century. ?ofathinwireoflength ?,stretchedbetween ???and ?,witha constantzerotemperatureattheends: ???and ???.Heproposed thattheinitialtemperature ?couldbeexpandedinaseriesofsine functions: ?(1) with ????(2) trary"function ?satisfies ??(3) forsolvingboundaryvalueproblems. sourceofknowledge."

III.DefinitionofFourierseries

animalheartbeats.

Afunction

?issaidtohaveperiod?if ?forall ?.For ofscale

Ifthefunction

?hasperiod? ?,thenitsFourierseriesis ?(4) withFouriercoefficients ?,and? ?definedbytheintegrals ??(5) ????(6) ????(7) If ?isinitiallydefinedovertheinterval??? ??,thenitcanbeextendedto? (asanoddfunction)byletting ?,andthenextendedperiodically withperiod thesineseriesinEq.s(1)and(2),because ?????,each? ????,andeach? ?in

Eq.(7)isequaltothe

?inEq.(2).]

Fourierseries5

thecomplexexponential ??satisfies ?.Hence ??????(8) with ??definedforallintegers?by ???(9)

Theseriesin(8)isusuallywrittenintheform

(10)

Wenowconsideracoupleofexamples.First,let

??bedefinedover? ??by ?if if andhaveperiod? ?.Thegraphof ??isshowninFig.1;itiscalledasquarewave inelectriccircuittheory.Theconstant ??is

While,for??????,

Figure1:Squarewave.

Thus,theFourierseriesforthissquarewaveis

??(11)

Second,let

?over? ??andhaveperiod? ?.SeeFig.2.Weshall ????and for ?????,is

Fourierseries7

Figure2:Parabolicwave.

??(12) ??and ??respec- tively,inSectionIV. hasasmallestperiodof? ??????isrepeated???? coefficient ??canbeinterpretedasacorrelationbetween ?andacomplexexpo- nentialwithapreciselylocatedfrequencyof ?.Thusthewholecollectionof theseintegrals,forallintegers ?,specifiesthefrequencycontentof ?overtheset offrequencies ???.Iftheseriesin(10)convergesto ?,i.e.,ifwecan write ???(13) then ??having frequency ?andamplitude if if ???.(14) derivationofEq.(9).MultiplyingEq.(13)by ?????andintegratingterm-by-term from ?to ?,weobtain

Bytheorthogonalityproperty,thisleadsto

??inEq.(9).

Theorem1(Bessel'sInequality)If

??isfinite,then ???(15) obtain ?(16)

Fourierseries9

Thus,forall

??(17) ?hasfiniteenergy,inthe ???(18) holdswhenever

Theorem2(Riemann-LebesgueLemma)If

??isfinite,thenEq.(18) holds. section. andtheRiemann-Lebesguelemma,see[7]or[12]

IV.ConvergenceofFourierseries

andtakeupthethirdtypeinthenextsection. convergeto ?.Thatis,does????? ?holdinsomesense? holdsforeachfixed ?-value ???.If????? ?doesequal ?,thenwesay thattheFourierseriesfor ?convergesto ?at point ???if,forsomepositiveconstant?, ????(19) holdsforall ?near ???(i.e., ??forsome ???).Itiseasytosee,for instance,thatthesquarewavefunction ??isLipschitzatallofitscontinuitypoints. are ?when ???,thisinequalityisequivalentto ?(20) forall ?near ???(and quotientsof ?(i.e.,theslopesofitssecants)near ??arebounded.Withthisin- ??isLipschitzatallpoints.

Moregenerally,if

?hasaderivativeat ???(orevenjustleft-handandright-hand derivatives),then ?isLipschitzat

Theorem3Suppose

?hasperiod? ?,that ??isfinite,andthat ?is

Lipschitzat

???.ThentheFourierseriesfor ?convergesto ?at

Toprovethistheorem,weassumethat

????.Thereisnolossofgeneralityin ??????from ?.Definethe function ?by? ?.Thisfunction?hasperiod? ?.Further- more, ??isfinite,becausethequotient ?isboundedin magnitudefor ?near ???.Infact,forsuch

Fourierseries11

and ofthederivativeof ?at

Ifwelet

??denotethe?? ?Fouriercoefficientfor? ?,thenwehave because ?.Thepartialsum? ?then telescopes: Since ?as ???.Thiscompletestheproof.

Itshouldbenotedthatforthesquarewave

??andtheparabolicwave ??,it ??isfiniteforthe function ?as followsfromBessel'sinequalityfor?. convergesto seriesfortheparabolicwave ??convergesto ??atallpoints.Whilethismaysettle oftheirconvergencetothesewaves. ?????superimposed ?as rate.Thepartialsum ?????differssignificantlyfrom ??.Nearthesquarewave's overshootthesquarewave'svalueof ?,tendingtoalimitofabout? ???.Thepartial rangeoffrequencies-cannotuse ?????,oranypartialsum? ?,toproduceasquare

Figure3:Fourierseriespartialsum?

?????superimposedonsquarewave. sumlike wave ??tendtozeromore rapidly(ataratecomparableto ?).Becauseofthis,thepartialsum? ?????for sums

WesaythattheFourierseriesforafunction

?convergesuniformlyto ?if ?(21)

Thisequationsaysthat,forlargeenough

,wecanhavethemaximumdistance betweenthegraphsof ?and? ofthisfortheparabolicwave.

Fourierseries13

Consequently

andthusEq.(21)holdsfortheparabolicwave theorem.Weshallsaythat usingthesameconstant

Theorem4Supposethat

?hasperiod? ?andisuniformlyLipschitzatallpoints, thentheFourierseriesfor ?convergesuniformlyto

Theorem4appliestotheparabolicwave

??,butitdoesnotapplytothesquare wave ??.Infact,theFourierseriesfor ??cannotconvergeuniformlyto ??.That

Figure5:Fourierseriespartialsum?

?????forparabolicwave. ousfunctions(likethepartialsums ?)mustbeacontinuousfunction(which let.Thisintegralformis ?(22) withkernel ?definedby ?(23) [7],[12],or[16]).Thekernel ?iscalledDirichlet'skernel.InFig.6wehave graphed

Fourierseries15

Figure6:Dirichlet'skernel

FromEq.(23)wecanseethatthevalueof

?followsfromcancellationofsigned ?(seeFig.6)is significantlygreaterthan ?(about? ???invalue). ??,Eq.(22)becomes ??(24) As ?rangesfrom ?to ?,thisformulashowsthat? ?isproportionaltothe signedareaof ?overanintervaloflength ?centeredat ?.ByexaminingFig.6, whichisatypicalgraphfor partialsums alsoresultsfromEq.(24).When ?nearsajumpdiscontinuity,thecentrallobe of whichovershootsthevalueof ?for ??byabout???

Theorem5If

?hasperiod? ?andhasboundedvariationon????? ??,thenthe

Fourierseriesfor

directlybysubstitutionof ????intotheseriesin(11)]. ?function(for which everypoint.

V.Convergenceinnorm

gencein ?-norm(alsocalled? ?-convergence.Thereisalsoanin- terpretationofquotesdbs_dbs20.pdfusesText_26