[PDF] [PDF] Cours I : SUITES NUMERIQUES I Quelques rappels

Cours I : SUITES NUMERIQUES I Quelques rappels 1/ Définition Définition : Une suite un est une application de l'ensemble ℕ ou une partie de ℕ dans ℝ 



Previous PDF Next PDF





[PDF] COURS TERMINALE S LES SUITES NUMERIQUES - Dominique Frin

COURS TERMINALE S LES SUITES NUMERIQUES A Notation - Définition Définition : une suite numérique (un) est une application de dans On note (un) la 



[PDF] FICHE DE RÉVISION DU BAC - Studyrama

somme de termes, limite de suites arithmétique et géométrique : STI2D, STL, ES/ L, S - suites Plan du cours 1 Une suite numérique est une fonction définie sur N (l'ensemble des entiers naturels), ou sur un intervalle I de N On peut noter  



[PDF] Terminale ES – Chapitre III – Suites numériques - tableau-noirnet

Si u0 est défini, on a u0=b+a×0=b Exemple : la suite définie pour tout n ∈ par vn=46n est arithmétique de terme initial v0=4 et de raison 6



[PDF] Résumé du cours sur les suites

Une suite numérique réelle est une application qui associe `a tout entier naturel n ≥ n0 un nombre réel qui est noté un Ce nombre est « le terme de la suite de 



[PDF] Cours I : SUITES NUMERIQUES I Quelques rappels

Cours I : SUITES NUMERIQUES I Quelques rappels 1/ Définition Définition : Une suite un est une application de l'ensemble ℕ ou une partie de ℕ dans ℝ 



[PDF] Terminale S - Suites numériques - Exercices - Physique et Maths

Exercice 1 1 La suite (un) est définie pour tout entier naturel n par un = n2 – 3n + 2 est-elle arithmétique ? 2 (vn) est une suite géométrique de premier terme v0  



[PDF] Extrait de cours - Mathématiques Terminale S - Cours Legendre à

2ème Leçon Rappels sur les suites numériques 3ème Leçon Suites arithmétiques et géométriques Série 2 Limites de suites et de fonction 1ère Leçon Limites 



[PDF] Cours 5: Une introduction aux suites numériques - Institut de

La suite sera notée u ou bien (un)n∈N un s'appelle le terme général de la suite Clément Rau Cours 5: Une introduction aux suites numériques 



[PDF] Chapitre 1 : Les suites

Terminale STI2D 1 La notion de suite est indissociable des procédures utilisées dès l'antiquité, notamment de valeurs approchées de valeurs numérique



[PDF] Mathématique en Terminale ES Suites numériques et applications

Pour tout entier naturel n, on note un le nombre de milliers de tonnes de CO2 émis dans cette zone industrielle au cours de l'année 2005 + n 1 Déterminer u0 et 

[PDF] les suites 1ere es exercices corrigés

[PDF] exercices corrigés suites arithmético-géométriques terminale es

[PDF] cours numérique terminale s

[PDF] cours sur les suites numériques terminale sti2d

[PDF] cours suites première sti2d

[PDF] math sti2d les suites

[PDF] suite numérique cours sti2d

[PDF] math terminale sti2d suites

[PDF] étude de cas l eau ressource essentielle

[PDF] etude de document sur l eau seconde

[PDF] exposé sur l'énergie solaire

[PDF] pse étiquetage des produits alimentaires

[PDF] réglementation étiquetage alimentaire 2015

[PDF] étiquetage alimentaire mentions obligatoires

[PDF] l'investissement cours d'économie pdf

[PDF] Cours I : SUITES NUMERIQUES I Quelques rappels

Agrocampus OuestENIHP 1ère année p. 1

Cours I : SUITES NUMERIQUES

I Quelques rappels

1/ Définition

Définition : Une suite un est une application de l'ensemble ℕ ou une partie de ℕ dans ℝ qui à chaque

élément

n de ℕ associe un unique élément noté un , appelé terme d'indice n de la suite un.

2/ Comment définir une suite

a/ Définition explicite

Définition : Une suite

un est dite explicite s'il est possible de calculer directement un à partir de n.

On note alors

un= gn avec g une fonction définie sur ℕ (et le plus souvent sur ℝ+ également).

Ex : :

un = 1 n1 ; (%i49) u[n]:=1/(n+1); (%i50) u[5]; (%o50) 1/6 (%i51) makelist([n,u[n]],n,0,5); (%o51) [[0,1],[1,1/2],[2,1/3],[3,1/4],[4,1/5],[5,1/6]] (%i52) wxplot2d([discrete,makelist(n,n,0,10),makelist(u[n],n,0,10)],[style,points]) b/ Suite définie par récurrence Définition : Une suite est définie par récurrence si le terme un1 peut être défini à partir de un : un1=fun avec f une fonction définie le plus souvent sur ℝEx : Soit un tel que un+1 = 0.5 un +2 et u0=1

Lecture graphique de

u1 ; u2... Construire les droites d'équation y=x et y=x2.

Déterminer graphiquement u1, u2, u3.

Agrocampus OuestENIHP 1ère année p. 2

(%i56) f(x):=1.5-0.5*x; (%i54) v[0]:2;v[n]:=f(v[n-1]); (%i58) load(dynamics); (%i63) evolution(f(x),2,10);(%i73) f(x):=2-1.1*x; (%i65) staircase(f(x),2,10);(%i77) f(x):=-1+1.5*x;

3/ Sens de variation d'une suite

Notation : ∃ signifie " il existe » et ∀ " quelque soit »

Définition : - Une suite

un est strictement croissante si :

∃N∈ℕ, tel que ∀ nN, un < un1 - Une suite (un) est strictement décroissante si :

Ex : Etudier le sens de variation des suites :

1.

un définie sur ℕ par un = n² + n 2. undéfinie sur ℕ par un+1 = un , u0=2

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0 2 4 6 8 10

x(n) n 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.5 1 1.5 2 2.5

x(n+1) x(n) -2 -1 0 1 2 3 4 -2-1 0 1 2 3 4 5 x(n+1) x(n) 0 5 10 15 20 25
30

0 5 10 15 20 25 30 35 40

x(n+1) x(n)

Agrocampus OuestENIHP 1ère année p. 3

II Suites arithmétiques et géométriques (rappels) a. Suite arithmétiques Définition : Une suite (un) est une suite arithmétique si : " n Î ℕ, un+1 = un + r r est appelé la raison de la suite.

Calcul direct de un : On a alors un = u0 + nr

Somme de termes consécutifs, S :

S= u0 + u1 + ....+ un S = nb de termes

2 termederniertermepremier×+×´Cas particulier : S=1+2+...+ n = n×n1 2

Ex : Montrer que la suite

un définie par un = 2n+1 est arithmétique. Calculer S=u5...u16. b. Suite géométriques Définition : Une suite (un) est une suite géométrique si : q est appelé la raison de la suite.

Calcul direct de un : On a alors un = u0 qn

Somme de termes consécutifs :

S= u0 + u1 + ....+ unS = premier terme

q qtermesnb

×11

cas particulier : 1+q+q²+...+qn = 1-qn1

1-q (q¹1)

Ex : Montrer que la suite (un) définie par un = 2-n/3n-2 est géométrique. Calculer S=u5+...+u16.

Agrocampus OuestENIHP 1ère année p. 4

III Limite d'une suite

1/ Notion de limite d'une suite

Définition : Pour une suite numérique (un), il y a 3 types de limites : - (un) converge vers une limite finie L. (un) est dite convergente.un+1 = 2-0,5 un - (un) admet une limite +

∞ ou -∞.(un) est dite divergente. un+1= -1+1,5 un - (un) n'admet pas de limite. (un) est dite divergente.

un1=1-un Propriété : Soit une suite (un) définie par un = f(n). Si f(x) admet une limite L en +¥, alors on dit que la suite (un) admet la limite L en +¥

Ex : Soit un = ln

11 n . Calculer la limite de (un). 1 1.2 1.4 1.6 1.8 2

0 2 4 6 8 10

x(n n 0 5 10 15 20 25
30
35

0 2 4 6 8 10

x(n) n 0 0.2 0.4 0.6 0.8 1

0 2 4 6 8 10

x (n n

Agrocampus OuestENIHP 1ère année p. 5

2/ Application aux suites géométriques

Propriété : Soit une suite géométrique (un) définie par sa raison q (q>0) et son premier terme u0=1,

un = qn. On a alors :

· si q > 1,

+ ¥®nlimqn = +¥ · si q=1, + ¥®nlimqn = 1 · si |q| <1, + ¥®nlimqn = 0

Remarque : On retrouve ces limites en écrivant : qn = e nln(q). Si q>1, ln(q) >0 ...

Ex : Soit un=

n

ae22 définie sur ℕ. Calculer sa limite et déterminer le plus petit entier n tel que un<10-3

3/ Suites croissantes majorées

Propriété 1 : Si une suite (un) est croissante et majorée alors elle converge. Propriété 2 : Si une suite (un) est décroissante et minorée alors elle converge.

Ex : Soit un=1+ +...

n ae 2

1. Démontrer que un est croissante et majorée. Conclure.

III Ordre et comparaison de limites de suites

1/ Compatibilité avec l'ordre.

Théorème : Soit deux suites (un) et (vn) telles que : limn∞un=Let limn∞vn=L' Si à partir d'un certain rang N, on a toujours : un

£ vn alors L £ L'

2/ Théorèmes de comparaison

Théorème 1 : Soit un réel L.

Si à partir d'un certain rang N on a ∣un-L| £ vn et limn∞vn=0alors limn∞un=L

Agrocampus OuestENIHP 1ère année p. 6

Exemple incontournable: Soit (un) telle que : ∣un1-2|£ 1

2 ∣un-2∣ et u0 = 3.

a/ Démontrer par récurrence que ∣un-2∣£ 1

2n

b/ En déduire la limite de un. c/ Trouver p tel que si np alors ∣un-2∣<10-3. Théorème (dit des gendarmes): Soient trois suites (un) (vn) et (wn).

Si à partir d'un certain rang N, on a :

vn

£ un £ wn et limn

®+ ¥vn= limn

®+ ¥wn=L alors limn

®+ ¥un=L

Ex: soit (un) définie sur

ℕ par un=nsinn n21. Etudier la convergence de cette suite. En déduire sa limite.

3/ Suites adjacentes

Définition : Deux suites (un) et (vn) sont dites adjacentes ssi - (un) est croissante - (vn) est décroissante limn∞ vn-un =0. Propriété : Deux suites adjacentes sont convergentes vers une même limite L.

Méthode du Héron pour approximer

2 :quotesdbs_dbs33.pdfusesText_39