[PDF] [PDF] Décomposition en séries de Fourier dun signal périodique

sinus (les coefficients~ sont nuls) 1-3) :EXemples de décomposition en séries de Fourier: a) Signal carré : 0 (J) 2w 3w 4w d) Signal sinusoï da1 redressé:



Previous PDF Next PDF





[PDF] Décomposition en série de Fourier Signaux périodiques

Soit un signal sinusoïdal décrit par : C 'est un signal ne contenant qu'un seul harmonique s(t) = 2cos(2π10 t − π 4 )



[PDF] Décomposition en séries de Fourier dun signal périodique

sinus (les coefficients~ sont nuls) 1-3) :EXemples de décomposition en séries de Fourier: a) Signal carré : 0 (J) 2w 3w 4w d) Signal sinusoï da1 redressé:



[PDF] Analyse de Fourier 1 Généralités

U0 est donc la composante de fréquence nulle du signal u(t) Le spectre d'un et les harmoniques comme les composantes sinusoıdales de pulsation pω0 2 2 La fonction Figure 7 – Fonction redressement monoalternance La série de 



[PDF] TD: Décomposition en série de Fourier - ISEN-Brest

Démontrer qu'un signal carré, d'amplitude ±Umax, de période T, se décompose en série de Fourier de la façon suivante: s(t) = 4 Umax π ∞ ∑ n=0 sin (( 



[PDF] Analyse spectrale du signal

filtre va modifier la composition de fréquences d'un signal sonore Un amplificateur large La transformation de Fourier s'applique à tous les types de signaux Toutefois l'étude dans Ce signal ne possède pas de termes en sinus Remarque: le 3 2 décomposition d'un signal redressé simple alternance 0 0 T/2 T t f1



[PDF] Analyse spectrale - ponge

5) Décomposition en série de Fourier de s signaux usuels Le signal le plus simple du point de vue fréquence est le signal sinusoïdal D'autre part, pendant toute la durée d'une note, l'allure temporelle et la composition harmoniques ne Les MAX782/MAX783/MAX786 utilisent un redressement synchrone assuré par 



[PDF] ANALYSE SPECTRALE DE SIGNAUX PÉRIODIQUES

I DÉCOMPOSITION D'UN SIGNAL PÉRIODIQUE EN SÉRIE DE FOURIER I 1 Série de Exemple du signal purement sinusoïdal, d'amplitude A : ( ) cos(2 )



[PDF] P2-3-Signaux periodiques non sinusoidaux - Free

3 sept 2005 · Dans le cas particulier des signaux sinusoïdaux, la valeur efficace est égale à La série de Fourier peut aussi bien s'écrire sous la forme d'un Effet d'un filtre linéaire sur la composition spectrale sinusoïdale redressée double alternance dont le chronogramme et le spectre sont représentés ci-après :



[PDF] GELE2511 - Chapitre 3

série de Fourier permet de transformer n'importe quel signal périodique en signal AC, produisent des sinusoıdes qui sont périodiques, mais redressés Pour faire l'analyse de circuits dont la source est périodique mais non sinusoıdale, il

[PDF] décomposition d une feuille

[PDF] matière organique pdf

[PDF] matière organique sol pourcentage

[PDF] recomposer un nombre ce2

[PDF] l hydrogénocarbonate de sodium nahco3 s est un solide blanc

[PDF] technique de construction batiment pdf

[PDF] plomb déchet dangereux

[PDF] les techniques de construction en batiment

[PDF] bordereau de suivi des déchets plomb

[PDF] technique de construction maison

[PDF] nouvelle technologie construction batiment

[PDF] traitement des déchets plomb

[PDF] mode opératoire plomb

[PDF] derrida la deconstruction pdf

[PDF] différance derrida pdf

[PDF] Décomposition en séries de Fourier dun signal périodique

I) ASPECf MATHEMATIQUE :

Décomposition en séries de

Fourier d'un signal périodique

1-1) Décomposition en séries de Fourier:

Une fonction périodique f(t) de période T peut, sous certaines conditions mathématiques qui seront toujours réalisées

dans la pratique en physique, se décomposer en une somme de fonctions sinusoï dales de la forme : (décomposition

en séries de Fourier) f(t) = a 0 + L (an cosnwt + bn sinnwt) n=l 2n (n entier et

OJ = -)

T

Les coefficients ao, au et bn sont indépendants du temps et sont donnés par les intégrales suivantes :

l fT ao =-f(t)dt T o 2fT an =-f(t) cosnwtdt T o 2fT bn =-f(t)sinnwtdt T o

On remarque que a0 est la valeur moyenne de la fonction f(t) : <\>est donc nul si la fonction f(t) est alternative.

Deux cas particuliers :

*** Si la courbe représentative de la fonction f(t) admet un centre de symétrie situé sur l'axe Ox, alors, en choisissant

ce point comme origine des temps : f( -t)=-f(t)

La fonction f(t) est une fonction impaire ; son développement en séries de Fourier ne comportera que des termes en

sinus (les sont nuls).

*** Si la courbe représentative de la fonction f(t) admet l'axe des ordonnées comme axe de symétrie, alors f(-t)=f(t)

(fonction paire). Le développement en séries de Fourier ne contient alors que des termes en cosinus ((les coefficients

bn sont nuls). 1-2) Spectre en fréquences :

Le terme général an cosnwt + bn sinnwt est appelé harmonique de rang n. Il peut être mis sous la forme :

En posant

en +b; coscpn = , il vient: 2 2 an +bn a an cosnwt + bn sinnwt = en cos(nwt-({Jn) Et la fonction périodique f(t) peut alors s'écrire : f(t) = L,en cos(nwt-cpn) n=l L'harmonique de rang 1 est appelé le fondamental. On obtient la représentation spectrale de la fonction f(t) en portant en ordonnée l'amplitude des harmoniques (les termes a,.., bn ou Cn) et en abscisse les pulsations correspondantes, ce qui conduit au diagramme de la figure ci-contre. (avec ici représentés les coefficients Cn)

1-3) :EXemples de décomposition en séries de

Fourier:

a) Signal carré :

0 (J) 2w 3w 4w

5w / w

f(t) +A -A On considère le signal de la figure ci-contre . La fonction f(t) est impaire et sa décomposition ne contiendra que des termes en sinus. On peut calculer: a 0 = 0

2 fT/2 2A 2A

bn = -T f(t) sinnwtdt = -(1-cosnn) = -(1-( -1t) -T/2 nn nn Par conséquent, la décomposition ne comprend que des harmoniques d'ordre impair : 4A/n f

4A [ . 1 . 1 . 5 ]

(t) =-smwt +-sm3wt +-sm ut+ ... n 3 5 4A/3n 4AJ5n

Son spectre est donné sur la figure ci-contre.

0 (J)

3W sw (J)

b) Signal triangulaire :

On considère le signal triangulaire donné ci-dessous (la fonction f(t) est paire). La décomposition en séries de Fourier

s'écrit alors : f(t)

SA/ri-

+A

SA/9ri

SA/2512-

-A 0 (J)

3w 5W (J)

Signal triangulaire Spectre en fréquences

SA [ 1 1 ]

f(t) = - 2 cos ut +--ycos3wt +

2cos5wt+

n 3 5

On peut remarquer que les harmoniques d'ordre supérieur à 1 sont beaucoup moins importants pour le signal

triangulaire que pour le signal carré, ce qui est naturel puisque le signal triangulaire a une forme proche de celle d'un signal sinusoï dal. c) Signal en dents de scie : f(t) (t) =-smwt--sm2wt + -sm3wt--sm4wt+ ... f

2A [ . 1 . 1 . 1 . J

Tr 2 3 4

-A d) Signal sinusoï da1 redressé: f (t) = -+--cos2wt --cos4üt +-cos6wt+ ...

2A 4A[ 1 1 1 J

Tr Tr 3 3.5 5.7

f(t) A 0 T/2 Il) MISE EN EVIDENCE EXPERIMENTALE DES HARMONIQUES D'UN SIGNAL :

On alimente un circuit série (RLC) par un générateur BF (supposé idéal) délivrant des signaux sinusoï daux,

triangulaires ou carrés. Les valeurs des composants utilisés sont:

L=44mH

C=0,1 f.l.F R=lOQ (résistance de la bobine inconnue)

Un oscilloscope bi courbe permet de visualiser les tensions aux bornes du générateur et aux bornes de R.

1) Faire le schéma du montage utilisé en précisant notamment les branchements de l'oscilloscope.

2) Calculer théoriquement la pulsation et la fréquence de résonance d'intensité, ainsi que le facteur de qualité

du circuit (RLC) série.

3) Expérimentalement,

on détermine la fréquence de résonance d'intensité en injectant une tension sinusoï dale à l'entrée du circuit. On mesure tJ=2390 Hz. La tension maximale d'alimentation est Em=0,3 V et la tension maximale aux bornes deR est UR,max=O,l38 V. a) Déterminer l'intensité maximale dans le circuit à la résonance d'intensité. b)

En déduire la résistance totale du circuit. Quelle est la valeur de la résistance de la bobine ?

4) On utilise maintenant une tension d'entrée carrée, de fréquence tJ et de valeur maximale 0,3 V. La valeur

maximale de la tension aux bornes deR est alors de 0,175 V.

a) Quelle est la forme et la fréquence de la tension observée aux bornes de R? Tracer, sur un même

dessin, la tension d'entrée et la tension aux bornes deR. b) Quelle est l'intensité maximale dans le circuit ? c) Faire une analyse de Fourier du signal carré et vérifier que les résultats expérimentaux sont en

accord avec cette décomposition. Déterminer notamment le premier coefficient de cette décomposition.

5)

On utilise désormais un signal d'entrée triangulaire de valeur maximale 0,3 V et de fréquence fo. La valeur

maximale de la tension aux bornes deR est alors 0,108 V.

Répondre

aux mêmes questions qu'en ( 4 ).

6) Observation des harmoniques : on diminue lentement la fréquence du signal d'alimentation en gardant la

même valeur pour sa valeur maximale (0,3 V). On observe des résonances secondaires pour lesquelles l'intensité dans

le circuit est sinusoï dale et passe par une valeur maximale. Les résultats numériques sont consignés dans les tableaux

suivants:

Signaux carrés :

flHz) 2390 796 478 342 266

UR(mV)

175 55

40 33 25

Signaux triangulaires :

flHz) 2390 800 480 345

108 12 5 3

Montrer que ces résultats expérimentaux sont en accord avec la décroissance des coefficients de la

décomposition en série de Fourier en 1/n pour le signal carré et en 1/ul pour le signal triangulaire.

quotesdbs_dbs32.pdfusesText_38