[PDF] [PDF] Corrigé du baccalauréat S Liban 27 mai 2015 - APMEP

27 mai 2015 · Corrigé du baccalauréat S Liban 27 mai 2015 EXERCICE 1 5 points 1 a De I(1 2;0;0), J(0 ; 1 2; 1) et K(1 ; 1 2; 0), on déduit : −→IJ(−1 2



Previous PDF Next PDF





[PDF] Corrigé du baccalauréat S Liban 27 mai 2015 - APMEP

27 mai 2015 · Corrigé du baccalauréat S Liban 27 mai 2015 EXERCICE 1 5 points 1 a De I(1 2;0;0), J(0 ; 1 2; 1) et K(1 ; 1 2; 0), on déduit : −→IJ(−1 2



[PDF] Corrigé du baccalauréat ES/L Liban 27 mai 2015 - lAPMEP

27 mai 2015 · Corrigé du baccalauréat ES/L Liban 27 mai 2015 EXERCICE 1 5 points Commun à tous les candidats 1 On donne ci-dessous le tableau de 



[PDF] Baccalauréat S - 2015 - lAPMEP

9 sept 2015 · Corrigé du baccalauréat S – Liban 27 mai 2015 EXERCICE 1 6 points A B Il faudrait, pour en être sûr, avoir les consignes de correction 4



[PDF] année 2015 - lAPMEP

11 sept 2015 · Corrigé du baccalauréat ES/L – Liban 27 mai 2015 EXERCICE 1 5 points Commun à tous les candidats 1 On donne ci-dessous le tableau 



[PDF] Corrigé du baccalauréat S Liban 27 mai 2015 - APMath

27 mai 2015 · Corrigé du baccalauréat S Liban 27 mai 2015 EXERCICE 1 5 points 1 a) De I( 1 2;0;0), J(0 ; 1 2; 1) et K(1 ; 1 2; 0), on déduit : −→IJ(−1 2



[PDF] Correction du baccalauréat S Liban 27 mai 2015 - Sigmaths

Correction du baccalauréat S Liban 27 mai 2015 A P M E P 2 La droite ( FD) étant dirigée par sécantes au point P(1, − 1 2, −1) Liban 2 27 mai 2015 



[PDF] Baccalauréat S Liban 27 mai 2015 - Toupty

27 mai 2015 · Baccalauréat S Liban 27 mai 2015 EXERCICE 1 6 points ABCDEFGH est un cube A B C D E F G H I J K L I est le milieu du segment 



[PDF] Exercices sur les suites : I- Ex II du sujet de bac STMG Pondichéry

I- Ex II du sujet de bac STMG Pondichéry avril 2015 Deux coureurs Justifier Correction de l'APMEP sur IV- D'après l'exercice 4 du bac ES/L liban mai 2015



[PDF] NAECATA : La formule magique pour évaluer par - Free

D'après les documents de l'APMEP www apmep Bac S, Liban Mai 2015 Exercice 3 (3 points) On considère la Le corrigé APMEP Une équation de la  



[PDF] sujet mathématiques liban bac es l 2014 obligatoire - Alain Piller

27 mai 2014 · ANNALES MATHÉMATIQUES BAC ES SUITES - 2014 SUJET 5 LIBAN BAC ES - 2014 CorreCtion réalisée Par alain Piller alainpiller fr 

[PDF] Baccalauréat S - 2015 - Apmep

[PDF] Sujet du bac S Physique-Chimie Obligatoire 2015 - Métropole

[PDF] Bac S 2016 Antilles Guyane Correction © http://labolyceeorg

[PDF] Corrigé du bac S SVT Spécialité 2016 - Liban - Sujet de bac

[PDF] Sujet corrigé de Mathématiques - Baccalauréat S (Scientifique

[PDF] Baccalauréat S Amérique du Nord 30 mai 2014 - Apmep

[PDF] Corrigé du bac S Physique-Chimie Obligatoire 2014 - Am du Nord

[PDF] Baccalauréat S Amérique du Sud 21 novembre 2013 - Apmep

[PDF] Amérique du Sud novembre 2014 - Apmep

[PDF] Amérique du Sud 24 novembre 2015 - apmep

[PDF] Amérique du Sud 22 novembre 2016 - Apmep

[PDF] Amérique du Sud 22 novembre 2016 - Apmep

[PDF] Correction PDF

[PDF] Bac S Antilles 09/2011 EXERCICE 3 : DIFFRACTION DE LA

[PDF] Corrigé du bac S Physique-Chimie Obligatoire 2015 - Antilles-Guyane

A. P. M. E. P.

?Corrigé du baccalauréat S Liban27 mai 2015?

EXERCICE15 points

1. a.De I?1

2; 0 ; 0?, J?0 ;12; 1?et K?1 ;12; 0?, on déduit :

-→IJ?-1

2;12; 1?et-→JK(1 ; 0 ;-1).

D"autre part

--→FD(-1 ; 1 ;-1)et :--→FD·-→IJ=1

2+12-1=0 et--→FD·-→JK=-1+1=0.

Levecteur

--→FD orthogonalàdeuxvecteursnoncolinéairesduplan(IJK)estnormal

à ce plan.

b.D"après la question précédente :M(x;y;z)?(IJK)?? -x+y-z+d=0.

En particulier I?(IJK)?? -1

2+d=0??d=12.

DoncM(x;y;z)?(IJK)?? -x+y-z+1

2=0??x-y+z-12=0.

2.OnaM(x;y;z)?(FD)??ilexistet?R,telque--→FM=t--→FD?????x-1= -t

y-0=t z-1= -t?? ?x=1-t y=t z=1-t.

3.M(x;y;z) appartient à (FK) et à (IJK) si ses coordonnées vérifient l"équation de la

droite et celle du plan soit : ?x=1-t y=t z=1-t x-y+z-1

2=0?1-t-t+1-t-1

2=0?? -3t+32=0??t=12.

D"où les coordonnées deM?1

2;12;12?.

4.IJ2=?-1

2?

2+?12?

2+12=64; de même IK2=?12?

2+?12?

2+02=24et JK2=12+02+12=2.

Or 6

4+24=2??IJ2+IK2=JK2égalité qui montre d"aprèsla réciproque du théorème

de Pythagore que le triangle IJK est rectangle en I.

L"aire du triangle (IJK) est donc égale à :

A(IJK)=1

2×IJ×IK=12×?

6

2×?

2 2=? 12 8=? 3 4.

5.V(FIJK)=1

3×A(IJK)×FM.

FM2=?-1

2?

2+?12?

2+?-12?

2=34?FM=?

3 2.

DoncV(FIJK)=1

3×?

3

4×?

3 2=18.

6.Vérifions si L?1 ; 1 ;1

2?appartient au plan IJK :

1-1+1

2-12=0 est vraie, donc les quatre loints I, J, K et L sont coplanaires.

Vérifions si (IJ) est parallèle à (KL) :

-→IJ?-1

2;12; 1?et-→KL?0 ;12;12?: ces deux vecteurs ne sont pas colinéaires donc les

droites coplanaires (IJ) et (KL) sont sécantes.

Corrigé du baccalauréat SA. P. M. E.P.

EXERCICE26 points

1.Sur [0 ; 1], 1?1+x?2, donc une primitive sur cet intervalle de

x?-→1

1+xestx?-→ln(1+x). D"où :

u 0=? 1 01

1+xdx=[ln(1+x)]10=ln2.

2. a.Par linéarité de l"intégrale :un+1+un=?

1 0x n+1

1+xdx+?

1 0x n1+xdx=? 1 0x n+1+xn1+xdx=? 1 0x n(x+1)1+xdx=? 1 0 xndx= ?xn+1 n+1? 1

0=1n+1.

b.La relation précédente donne pourn=0, u

1+u0=1??u1=1-u0=1-ln2.

3. a.•Il faut initialiser la suite àu0=ln2.

•La relationun+1+un=1

n+1s"écrit au rang précédent, soit pourn?1,un+ u n-1=1 n, soitun=-un-1+1n. Pour passer d"untermeàl"autre ilfautdoncprendrel"opposé dutermeprécédent et ajouter 1 n. D"où l"algorithme :

Variables :ietnsont des entiers naturels (n?1)

uest un réel

Entrée : Saisirn

Initialisation : Affecter àula valeur ln2

Traitement : Pourivariant de 1 àn

|Affecter àula valeur-u+1iFindePour

Sortie : Afficheru

b.Conjecture : il semble que la suite(un)soit décroissante vers zéro.

4. a.Pour tout natureln,un+1-un=?

1 0x n+1

1+xdx-?

1 0x n1+xdx= 1 0x n+1-xn

1+xdx=?

1 0x n(x-1)1+xdx.

Or on a vu que sur [0; 1], 1+x>0,xn?0 et 0?x?1??

-1?x-1?0, donc finalementxn(x-1)

1+x?0.

Conclusion : l"intégrale de cette fonction négative sur [0;1] est négative. Orun+1-un<0 quel que soitnmontre que la suite(un)est décroissante. b.unintégrale d"une fonction positive sur [0; 1] est quel que soit le natureln, un nombre positif ou nul.

La suite

(un)décroissante et étant minorée par zéro converge vers une limite?, avec??0.

Liban227 mai 2015

Corrigé du baccalauréat SA. P. M. E.P.

5.Pour tout natureln,un+1+un=1n+1?0?un?1n+1, puisque

u n+1?0.

Or lim

n→+∞1 n+1=0. Conclusion limn→+∞un=?=0.

EXERCICE33 points

1.m=e.

Une équation de la tangente àCau point d"abscisse 1 est : y-e1=e1(x-1)??y=ex.

2.Il semble d"après la question précédente que :•sim=e, la droite est tangente à la courbe : il y a un point commun;

•sime, la droite et la courbe ont au moins un point commun.

3.Les points communs àCet àDmont une abscisse qui vérifie :

e x=mx??ex-mx=0. Soitgla fonction définie surRparg(x)=ex-mx; elle est dérivable surRet sur cet intervalle : g ?(x)=ex-m. Or e x-m>0??ex>m?x>lnm; de même e x-m<0??ex0). Lafonctiongest doncdécroissante sur]-∞; lnm[etcroissante sur]lnm;+∞[.Elle a donc un minimumg(lnm)=elnm-mlnm= m-mlnm=m(1-lnm). De plus : •limx→-∞ex=0, donc limx→-∞g(x)=+∞;

•En écrivantg(x)=x?ex

x-m? , on sait que limx→-∞e xx= +∞, donc par produit de li- mites lim x→-∞g(x)=+∞.

D"où le tableau de variations suivant :

x-∞lnm+∞ g(x)+∞ +∞ m(1-lnm) •Si 00 etm(1-lnm)>0 : le minimum de la fonction est supérieur à zéro donc la fonction ne s"annule pas; la droite et la courbe n"ont pas de point commun. •Sim=e on a vu que la droite est tangente à la courbe. •Sim>e alors lnm>1??1-lnm<0 etm(1-lnm)<0 : la fonctiongs"annule deux fois d"après le théorème des valeurs intermédiaires, donc la droite et la courbe ont deux points communs.

Liban327 mai 2015

Corrigé du baccalauréat SA. P. M. E.P.

EXERCICE45 points

Candidats n"ayant pas suivi l"enseignement despécialité

1.Arbre de probabilités :

A 0,47 V0,9 V0,1

B0,53V

0,8 V0,2 En bleu les données de l"énoncé, les autresvaleurs étantobtenues parcomplément à 1.

2. a.D"après la formule des probabilités totales :

0,423+0,424=0,847.

b.pV(A)=p(A∩V) p(V)=0,4230,847≈0,4994 à 10-4près.

3.SoitEl"évènement "laperont vote effectivement pour le candidatA».

E=(A∩V)??

B∩

V? (évènements disjoints), donc : p(E)=p(A∩V)+p?

B∩

V?

4.La fréquenceobservée estf=0,529 pour un sondage réalisé auprèsd"un échantillon

den1200 personnes. Onvérifiequelesconditionsd"application del"intervalledeconfiance sontremplies: L"intervalle de confiance au seuil de 95% est alors : I c=? f-1 ?n;f+1?n?

0,529-1?1200; 0,529+1?1200?

I c=≈[0,5001 ; 0,5579]

à 10

quotesdbs_dbs22.pdfusesText_28