[PDF] [PDF] Examens corrigés 1 Examen 1 - Département de Mathématiques d

α ∫ f Exercice 2 En dimension d ⩾ 1, soit une fonction mesurable f : Rd −→ R+ à qu'on peut démontrer avec des moyens plus sophistiqués que le volume



Previous PDF Next PDF





[PDF] Exercices et examens résolus: Mécanique du point matériel

Ce recueil d'exercices et problèmes examens résolus de mécanique du point matériel 3) En déduire la surface et le volume d'un cylindre d'axe ( ), de un angle α constant avec cet axe Oz Un anneau de masse m, assimilé à un  



[PDF] Synthèse de cours exercices corrigés - Cours, examens et exercices

ment dans les cours de finance mais également des exercices portant sur Le tableau 1 16 reprend des données concernant les actions Alpha et Bêta directement de leurs activités et de leur capacité à générer du volume (de vente ou de



[PDF] MECANIQUE RATIONNELLE - Cours, examens et exercices gratuits

Cours exercices, Mécanique Rationnelle : TCT et LMD-ST sem :3 20 α β A KADI Trouvez le volume d'un parallélépipède dont les cotés sont les vecteurs : U



[PDF] Synthèse de cours exercices corrigés - ACCUEIL

PEARSON Education France — Exercices d'Économétrie – 2e édition — ( Scriptex : 4e épreuve) ou en termes réels (à prix constants, en volume rt qu' elle contient, par une forme fonctionnelle avec des coefficients α, β et γ supposés non



[PDF] Exercices de Thermodynamique

2) Calculer le volume occupé par une mole d'un gaz parfait `a la température de 0◦C sous la Déterminer le cœfficient de dilatation à pression constante α en fonction des variables indépen- L'application du PDF à la bille, après y avoir



[PDF] 80 Exercices corrig”s - webusersimj-prgfr

Déterminer les valeurs du param`etre réel α pour lesquelles ∫ 1 0 pourra consulter le premier volume du traité de Bourbaki [Bou] ainsi que d'autres sources



[PDF] MECANIQUE DES FLUIDES Cours et exercices corrigés

Ils sont extraits, pour la plupart, des examens et devoirs surveillés que j'ai proposé à l'Institut Considérons un élément de volume d'un fluide incompressible (liquide homogène de poids u ) qui fait un angle α avec l'axe vertical (O,Z ) d'un repère R(O, X о ,Y о ,Z о ) Cours, exercices et problèmes corrigés Classes 



[PDF] Examens corrigés 1 Examen 1 - Département de Mathématiques d

α ∫ f Exercice 2 En dimension d ⩾ 1, soit une fonction mesurable f : Rd −→ R+ à qu'on peut démontrer avec des moyens plus sophistiqués que le volume



[PDF] Travaux dirigés corrigés Mécanique du Point - FP BENI-MELLAL

Calculer le volume Vc du cornet en fonction de h et tan(α) 3 En déduire le volume total de la glace (exprimé en litre) que mangera l'enfant devoir à la maison



[PDF] Statistiques descriptives et exercices

Rappels de cours et exercices corrigés sur la statistique descriptive Abdennasser 1 Première méthode : Graphiquement à partir de la formule tan( α) = F(Li+1) − F(Li) Li+1 − Li = publicité X et le volume des ventes Y qu'elle réalise

[PDF] alphabet anglais phonétique tableau PDF Cours,Exercices ,Examens

[PDF] alphabet chinois traduit en français pdf PDF Cours,Exercices ,Examens

[PDF] Alphabet des vacances - O, X et Ä 5ème Allemand

[PDF] Alphabet des vacances - vous pouvez toujours répondre ! - O, U, X et Ä 5ème Allemand

[PDF] alphabet et qualité 6ème Français

[PDF] alphabet exercise workout PDF Cours,Exercices ,Examens

[PDF] alphabet italien audio PDF Cours,Exercices ,Examens

[PDF] alphabet italien chanson PDF Cours,Exercices ,Examens

[PDF] alphabet phonétique international anglais pdf PDF Cours,Exercices ,Examens

[PDF] alphabétisation adultes exercices gratuits PDF Cours,Exercices ,Examens

[PDF] alphabétisation adultes immigrés PDF Cours,Exercices ,Examens

[PDF] alphonse de lamartine PDF Cours,Exercices ,Examens

[PDF] Alphonse De Lamartine "L'AUTOMNE" commentaire 2nde Français

[PDF] alphonse de lamartine biographie PDF Cours,Exercices ,Examens

[PDF] alphonse de lamartine le lac PDF Cours,Exercices ,Examens

Examens corrigés

FrançoisDEMARÇAY

Département de Mathématiques d"Orsay

Université Paris-Saclay, France

1. Examen 1

Exercice 1.

[Inégalité de Tchebyche v]Soitf:Rd!R+une fonction intégrable à valeurs positives qui est Lebesgue-intégrable. Pour >0, on pose : E :=x2Rd:f(x)> :

Montrer que (figure-bonus possible) :

m E61 Z f: Exercice 2.En dimensiond>1, soit une fonction mesurablef:Rd!R+à valeurs positives finies. (a)Rappeler la définition initiale de la mesurabilité d"une fonction, puis des caractérisa- tions équivalentes. (b)Montrer que, pour tout entierk2Z, les sous-ensembles : E k:=x2Rd: 2k1< f(x)62k sont mesurables dansRd. (c)Montrer que l"on a la réunion disjointe (figure-bonus possible) : 1[ k=1E k=x2Rd:f(x)>0: (d)Pour tout entiern2N, on introduit la fonction étagée : F n:=k=+nX k=n2 k1Ek; ainsi queF:=limn!1Fn. Montrer que l"on a en tout point : 12

F6f6F:

(e)Montrer que la fonction d"originefest Lebesgue-intégrable si et seulement siP1 k=12km(Ek)<1. 1

2 FrançoisDEMARÇAY, Département de Mathématiques d"Orsay, Université Paris-Saclay, France(f)Aveca;b2R, on introduit les deux fonctions :

f(x) :=8 :1jxjapour00autrement;etg(x) :=8 :1jxjbpourjxj>1;

0autrement:

En utilisant(e), montrer quefest Lebesgue-intégrable surRdexactement lorsquea < d, et aussi, montrer quegest Lebesgue-intégrable surRdexactement lorsqueb > d. Exercice 3.Sur un segment compact[a;b]bR, soitf: [a;b]!Rune fonction réelle quelconque, pas forcément bornée. Montrer qu"on peut néanmoins définir sans modifica- tion la notion de Riemann-intégrabilité def, mais montrer alors que si, pour tout" >0, il existe une subdivisionde[a;b]telle que la différence entre les sommes de Darboux supérieure et inférieure defsatisfait(f)(f)6", alors ceci implique en fait que fest nécessairement bornée. Exercice 4.SoientE1;E2;E3; :::Rdune infinitédénombrable d"ensembles mesurables emboîtés de manière décroissante les uns dans les autres : E kEk+1(k>1):

On suppose que pour un certain entierk0>1, on a :

mEk0<1:

En utilisant un théorème fondamental énoncé avec soin concernant les réunions dénom-

brables disjointes d"ensembles mesurables, montrer que (figure-bonus possible) : m 1\ k=1E k =limK!1mEK; puis trouver un exemple simple faisant voir que cette conclusion peut être mise en défaut sans l"existence dek0tel quem(Ek0)<1. Exercice 5.Le but de cet exercice est de montrer que recouvrir les sous-ensemblesERd par un nombrefinide cubes ne suffit pas à produire un concept réellement satisfaisant de mesure extérieurem(E). On se restreint ici à la dimensiond= 1. En effet, lamesure extérieure de JordanmJ(E)peut être définie par : m

J(E) =infJX

j=1 Ij; où l"infimum est pris sur les recouvrementsfinis : EJ[ j=1I j; par des intervalles fermésIj. (a)Montrer quemJ(E) =mJE pour tout sous-ensembleER. (b)Trouver un sous-ensemble dénombrableE[0;1]tel quemJ(E) = 1, tandis que sa mesure extérieure de Lebesgue vautm(E) = 0.

1.Examen 1 3Exercice 6.DansRd, soit un nombre fini quelconquen>1de sous-ensembles mesurables

A

1;A2;:::;AnRdde mesures finies :

m(A1)<1; m(A2)<1; ::::::; m(An)<1:

Montrer que (figure-bonus possible) :

m A

1[A2[ [An

=X

16k6n(1)k1X

16i1 A i1\Ai2\ \Aik Exercice 7.Soitmla mesure de Lebesgue surRet soit" >0arbitrairement petit.

Construire un ouvert

Rdense dansRtel quem(

)6". Exercice 8.Soitf2C0c(Rd;R)une fonction réelle continue à support compact. Montrer que :

0 =limh!0Z

R df(xh)f(x)dx: Indication:Sisupp(f)B(0;R)pour un rayonR1assez grand, se limiter àh2Rdavec jhj<1et se ramener àR

B(0;R+1).

Exercice 9.Trouver une suite de fonctions en escalierfn: [0;1]!R+satisfaisant :

0 =limn!1Z

1 0 f n(x)dx; mais telle que, entoutpointx2[0;1], la suite numérique :fn(x)1 n=1 soit bornée et ne converge vers aucune valeur réelle.Indication:Utiliser la suite double F k;m(x) :=1[k1m ;km ]pour16k6m, illustrer son comportement pourm= 1;2;3;4,

décrire en mots les idées qui viennent à l"esprit, et enfin, rédiger en détail une démonstra-

tion rigoureuse.

4 FrançoisDEMARÇAY, Département de Mathématiques d"Orsay, Université Paris-Saclay, France2. Corrigé de l"examen 1

Exercice 1.Commef:Rd!R+est Lebesgue-intégrable, pour tout réel >0, l"en- semble de sur-niveau : E :=x2Rd:f(x)> est mesurable dansRd. De plus, l"inégalité entre fonctions : f(x)>1E(x)(8x2Rd); est claire lorsquex62Ecarf(x)>0 =0par hypothèse, et vraie aussi lorsquex2E, carf(x)> =1, donc elle est satisfaite partout. Par intégration de cette inégalité, nous obtenons instantanément :Z R df>mE; ce qui donne bienm(E)61 R R df. R R df E EE m(E) Géométriquement, l"hypographe def:(x;y)2RdR+: 06y6f(x); dont la mesure(d+ 1)-dimensionnelle vautR R dfd"après un théorème du cours, est "coupé» à hauteur >0, et sur le sous-ensembleERdoùf > , on ne retient que la valeur-type, ce qui correspond à restreindre la considération au "pseudo-rectangle» de hauteuret de "base»E, lequel est entièrement contenu dans l"hypographe def au-dessus deE:(x;y):x2E;06y6(x;y):x2E;06y6f(x);

et par intégration "visuelle», on trouve bien que l"aire de ce pseudo-rectangle est inférieure

à l"aire intégrale totale :

mE6Z R df:

2.Corrigé de l"examen 1 5Exercice 2.(a) Une fonctionf:E! f1g [R[ f1gdéfinie sur un sous-ensemble

mesurableERdest ditemesurablesi, pour touta2R, son ensemble de sous-niveau : f

1[1; a[=x2E:f(x)< a;

est un sous-ensemblemesurabledeRd. Dans le cours, on a obtenu les caractérisations

équivalentes suivantes :

pour touta2R, l"ensemble :x2E:f(x)6a est mesurable; pour touta2R, l"ensemble :x2E:f(x)>a est mesurable; pour touta2R, l"ensemble :x2E:f(x)> a est mesurable; pour tout couple de nombres réels finis :

1< a < b <+1;

les ensembles-tranches : a < f < b sont mesurables; plus généralement, il en va de même en remplaçantfa < f < bgpar l"un des trois ensembles :a6f < b;a < f6b;a6f6b: (b)On en déduit que pour toutk2Z, les ensemblesEk:=fx2Rd: 2k1< f(x)6 2 kgsont mesurables dansRd. (c)Pour toutk2Z, l"ensembleEk=fx2Rd: 2k1< f(x)62kgest contenu dans l"ensemble : E :=x2Rd:f(x)>0; donc : k2ZE kE: Pour l"inclusion opposée, soitx2Equelconque. Commef(x)>0, et comme la réunion d"intervalles enchaînés :a k2Z

2k1;2k= ]0;1[

est disjointe, il existe un unique entierkx2Ztel que : 2 kx1< f(x)62kx; ce qui signifiex2Ekx, et donne bien :[ k2ZE kE:

6 FrançoisDEMARÇAY, Département de Mathématiques d"Orsay, Université Paris-Saclay, France(d)Soitx2Rdquelconque fixé.

Sif(x) = 0, alors pour toutn2N, puisquex62Ekquel que soitk2Z, on a : F n(x) =X jkj6n2 k1Ek(x) = 0; puis en faisantn! 1:

F(x) = 0 =f(x);

d"où trivialement 12

F(x)6f(x)6F(x), car12

06060, c"est très vrai, mon bébé!

Si maintenantf(x)>0, il existe un uniquekx2Ztel quex2Ekx, d"où pour tout n>jkxj: F n(x) = 2kx; puis en faisantn! 1:

F(x) = 2kx:

Comme par définition dekxon a :

12

F(x) = 2kx1< f(x)62kx=F(x);

en relaxant la "strictitude» de l"inégalité à gauche, nous obtenons bien12

F(x)6f(x)6

F(x). (e)Commef:Rd!R+est mesurable à valeurs positives finies,fest Lebesgue- intégrable (par définition!) si et seulement siR Rquotesdbs_dbs46.pdfusesText_46