[PDF] [PDF] Epigraph projections for fast general convex programming

epigraph projection algorithms (plus some additional prox- imal operators), which in turn means of converting the problems to a standard form cone problem



Previous PDF Next PDF





[PDF] 6253 Convex Analysis and Optimization, Lecture 2 - MIT

Definition of sup and inf of a set of real num- bers − Convergence f(x) x Convex function f(x) x Nonconvex function Epigraph Epigraph f(x) f(x) x x Epigraph



Epigraphs of Convex Set Functions - ScienceDirectcom

In this paper, we characterize a convex set function by its epigraph The w*- semicontinuities for set functions are defined We identify a convex set function with



[PDF] Convex Sets and Functions (part III)

The epigraph and hypograph of functions Definition Let (S,O) be a topological space and let f : S −→ ˆR be a function Its epigraph is the set epi(f ) = {(x,y) ∈ S  



[PDF] Lec4p1, ORF523 - Princeton University

Is there a connection between convex sets and convex functions? Definition The epigraph of a function is a subset of defined as Theorem A 



[PDF] Epigraph projections for fast general convex programming

epigraph projection algorithms (plus some additional prox- imal operators), which in turn means of converting the problems to a standard form cone problem



[PDF] Toward An Epic Epigraph Graph - Association for Computational

A figure like William Shakespeare is widely acknowledged as important by literary critics because his works are mean- ingful and there is a great deal to be said 



[PDF] Portfolio Assignment: Your Own Epigraph

An epigraph usually somehow encapsulates or adds meaning to the work that follows it In Into the Wild, Jon Krakauer uses epigraphs from Henry David Thoreau, 

[PDF] epigraph package latex

[PDF] epigraph width latex

[PDF] epinephrine dilution chart

[PDF] episode timeskip one piece

[PDF] épithélium de revêtement

[PDF] épithélium de revêtement pdf

[PDF] épithélium définition

[PDF] épithélium glandulaire

[PDF] épithélium malpighien

[PDF] épithélium prismatique

[PDF] épithélium pseudostratifié

[PDF] épitope

[PDF] eprep udemy suite of courses

[PDF] épreuve allemand lv2 bac s 2019

[PDF] epreuve bac anglais 2020

Epigraphprojections forfastgeneralcon vexprogramming

Po-WeiWangPOWEIW@CS.CMU.EDU

MachineLearningDepartment, Carnegie MellonUniv ersity,Pittsburgh,P A15213USA

MattW ytockMWYTOCK@STANFORD.EDU

ElectricalEngineeringDepartment, StanfordUniv ersity,Stanford, CA94305 USA

J.ZicoKolter ZKOLTER@CS.CMU.EDU

SchoolofComputer Science,Carnegie MellonUni versity, Pittsburgh,PA15213 USA

Abstract

Thispaper develops anapproachforefÞciently

solvinggeneralcon vex optimizationproblems speciÞedas disciplinedconv exprograms (DCP), acommongeneral-purpose modelingframe- work.SpeciÞcallywe developanalgorithm baseduponf astepigraphprojections,projections ontotheepigraph ofacon vex function,anap- proachcloselylink edtoproximal operatormeth- ods.We showthatbyusingthese operators,we cansolve anydisciplinedconve xprogramwith- outtransformingthe problemtoa standardcone form,asis donebycurrent DCPlibraries.W e thendev elopalargelibraryofefÞcientepigraph projectionoperators,mirroring ande xtending workonfastproximal algorithms,forman ycom- monconv exfunctions.Finally,weevaluate the performanceof thealgorithm,and showit often achievesorderofmagnitudespeedupso vere xist- inggeneral-purposeoptimization solvers.

1.Intr oduction

Althoughconv exoptimizationtechniquesunderlyalarge numberofmachine learningalgorithms,there hasbeena traditionaltensionbetween generalpurposeoptimization methodsandspeci alizedalgorithms.General purposeal- gorithms,ex empliÞedbystandardconeformsolverslike linear,secondorder,and semideÞnitecone solvers,with theadditionof modelinglanguagessuch ascvx(Grant &

Boyd,2008)orcvxpy (Diamond&Bo yd,2015)(which

convertproblemstotheseforms),pro videav eryßexi- bleÒrapidprototypingÓ framework forconv exoptimiza-

Proceedingsofthe33

rd

InternationalConference onMachine

Learning,New York,NY,USA, 2016.JMLR:W&CPvolume

48.Copyright 2016bytheauthor(s).

tion.Howe ver,thesemethodstypicallydonotscalebe- yondmedium-sizeproblems, andarenot well-suitedtothe largerproblemsthatmake upmuchcurrent machinelearn- ingwork. Thishasleadtothe development ofanum- berofspecialized solversfor manyproblems ofinterest includingsupportv ectormachines (Platt,1999;Shalev-

Shwartzetal.,2011; Chang&Lin, 2011),rankingap-

proaches(Joachims,2002), sparseinv ersecov ariancees- timation(Friedmanet al.,2008; Hsiehetal., 2014),etc, justtoname avery smallnumberof examples.Recently , manyspecialpurposealgorithmsha ve startedtouse proxi- maloper atorsasak eyb uildingblock. Thiscurrent worklooks tobeginbridgingtheg apbetween specializedandgeneral purposessolvers. TheÞrstmain contributionofthiswork isamethod forconv ertingany disciplinedconv exprogram(DCP)intoaformthatcanbe directlysolv edbyproximalmethods,withoutcon verting toconeform. Doingsorequires anew setofoperators forepigraphprojections,anoperator relatedtob utdis- tinctfrommost existingproximal operators;speciÞcally, forsomecon vex functionf:R n

θR,epigraphprojec-

tionsare optimizationproblemsof theform epi f (v,s)=ar gmin x,t {λx#vλ 2 2 +(t#s) 2 |f(x)$t}(1) i.e.,they areaprojectionofsome (v%R n ,s%R)ontothe epigraphset{(x,t)|f(x)$t}.Thus,the secondmain epigraphprojectionalgorithms (plussomeadditional prox- imaloperators),which inturncan solvea verybroad range ofDCPswithout ev erresortingto standardconetransfor- mations.To buildthesefastepigraph projectionsopera- torswede velopne woptimizationapproaches,including animplicit dualNewton methodanda O(n)Òsum-of-clipÓ solver,bothofwhichwedetail inlatersections. Finally,we implementthesemethods inageneric optimizationsolver , approaches,oftenan orderof magnitudeormore. Epigraphprojections forfastgeneralconv exprogramming

2.Backgr ound

Disciplinedconv exprogrammingDisciplinedcon vex

workforconve xprograms thatallowsverygeneralconvex problemstobe speciÞedusing arelativ elysmallset ofcon- vexatomicfunctionandsetofcompositional rulesthatpre- serveconvexity .Forinstance,abasicrulestatesthatfor h:R k

θR,g

i :R n

θR,andone ofthefollo wingholds

foreachi=1,...,k: ¥g i convex,hconvexnondecreasinginargumenti ¥g i concave,hconcavenonincreasinginargumenti ¥g i afÞne,hconvex, thenf=h(g 1 (x),...,g k (x)),iscon vex (seee.g.Boyd& issufÞcient butnotnecessaryforaproblem tobecon vex: theÒlog-sum-expÓ functionisconvex, butcannot beveri- Þedassuch bythe above rules.Howe ver, log-sum-expcan berepresentedas aseparateatomic functionthatis conve x (andmonotonic initsar guments).Inpractice, mostcon- vexproblemscanbewrittenusing theDCPruleset witha relativelysmallsetofatoms. Inadditionto thisveriÞcation, DCPlibraries alsoprovide a meansofcon vertingthe problemstoastandardformcone problem.Eachfunctional atomalso providesan graphim- plementationofthe function,arepresentation ofthefunc- tionasthe solutiontoa linearconeproblem. Fore xample, theθ 1 normhasthe graphform

λxλ

1 =min y 1 T y,subjectto#y$x$y.(2) Onceanoptimization problemhasbeen veriÞed asconv ex bytheDCP rules,wereplace allinstancesof DCPatoms withtheircorresponding epigraphimplementation(intro- ducingnew variablesasneeded).Theresulting problem, whichmustbe itselfalinear coneproblem,is guaranteed tobeequi valentto theoriginaloptimizationproblem,and canthenbe solvedby standardformsolv ers.

ProximalmethodsArecenttrend inmachinelearning

optimizationmethods hasbeenthe increaseddev elopment ofalgorithmsbased uponproximaloperators. Given acon- vexfunctionf:R n

θR,theproximal operatoris deÞned

as prox θf (v)=ar gmin x

λf(x)+

1 2

λx#vλ

2 2 .(3)

Crucially,formanyfunctions f,includingman ynon-

smoothfunctions,we cancompute theproximaloperator inclosedf or m(orifnot,atleastcomputeittonumerical precisionvery efÞciently).Forinstance,the proximaloper- atorforthe θ 1 normisgi venby softthresholding(Donoho,

1995),prox

θθáθ1

(v)=m ax{|v|#λ,0}ásign(v),whereall operatorsare appliedelementwise. Generallyspeaking,Òproximal algorithmsÓreferto anyop- timizationmethodthat usesaproximal operatorinits iter- ation.Suchalgorithms arenot new, withtheoriginal proxi- malpointalgorithm proposedin1976 (Rockafellar,1976), buttheyhav eseenincreasedusageinrecent years,often inconjunction withtheincreasing useofθ 1 regularization; seee.g.(P arikh&Bo yd,2013)forrecentsurve yofse veral suchmethods. Operatorsplittingtechniques areoneclass ofproximalal- gorithm,whichsolv eacomposite optimizationproblem minimize x f(x)+g(x),(4) typicallybye xploitingfast proximaloperatorsforfandg. Ageneralre view ofoperatorsplittingalgorithmsisgiven in(Ryu& Boyd,2016), andtwo algorithmsofparticular recentinterestare Douglas-Rachfordsplitting (Douglas& Rachford,1956) andthealternating directionmethodof multipliers(ADMM)(Gabay &Mercier,1976; Boydet al.,

2011).Ultimately, ouralgorithmusesADMMtosolv ethe

resultingproblemsafter transformingthem toasuitable form,thoughother operatorsplitting methodscanbe ap- pliedaswell. Ofparticularrele vanceto ourproblemis the splittingconesolv er(SCS) (OÕDonoghueetal.,2013),an applicationofADMM tolinearcone programs;together withexisting DCPlibraries,thissystemisv erycompara- bletoour own(a solver capableofsolvingDCPproblems usingproximalmethods), andcomparisonsto SCSwillbe oneofthe primaryfocusesin latersections.Also related istheTFOCS algorithm(Becker etal.,2011), whichuses Þrstordermethods tosolv esev eralclassesof coneprob- lems,thoughit doesnotsolv egeneralDCPs. Inthegeneral themeofproximal algorithms,thereha ve beenafe wpapersthat doconsiderepigraphprojections inalimited manner.F orexample, ToÞghietal.(2014) useaepigraph projectiononto atotal-variation-type norm describedvia alinearprogram forimagedecon volution; Chierchiaetal. (2012)describeprojections ontothe epi- graphoftheθ 2 andθ norms(inthelatercaseusinganaive O(nlogn)algorithm),for afew specializedoptimization problems;andHarizano vet al.(2013)useanepigraphpro- jectionontoa veryspeciÞc functionuseful forimagepro- cessing.Noneof theseapproaches relatetosolving general optimizationproblems, nordothe ythede velopthe range ofepigraphprojections thatweco ver.

3.Conv ertingDCPstoproximalformwith

epigraphprojections

Inthissection, weshow thatany DCPcanbe solvedus-

ingaproximal algorithmthatemplo ysstandardproximal operatorsplusepigraph projections.Inparticular weshow thatany DCPcomposedentirelyofatomsfrom someset offunctionsG(butwhichcanbe composedaccordingto Epigraphprojections forfastgeneralconv exprogramming theDCP rulesettoform muchmorecomple xfunctionsthat donotadmit efÞcientproximal operatorsorepigraph pro- jections)canbe solvedusing onlypr oximaloperatorsand epigraphprojectionsforfunctions gθG;thus,if weimple- mentproximaland epigraphprojectionoperators forev ery elementina DCPatomlibrary ,wecan directlysolve the problemwithoute ver usinganyoftheDCPgraphimple- mentations,but justtherelevantoperators directly.This is formalizedas follows

Theorem1.ConsidertheDCP optimizationproblem

minimize x f 0 (x) subjecttof i (x)λ0,i=1,...,p Ax=b (5) withoptimizationvariable x,afÞne constraintsAθR mθn andbθR m ,andcon vexfunctions f i :R n #Rbuiltvia theDCP rulesetfrom convex atomsinasetG.Thenthis optimizationproblem canbewrittenequivalentlyas minimize øx N i=1 f i (øx) subjectto

Aøx=

b (6) forsomee xpandedsetof variablesøxθR øn suchthatx= øx I0 forsomeset I 0 ;afÞne constraints

AθR

ømθøn

and bθR øm ;and convex functions f:R øn #Roftheform f i (øx)= g(øx Ii

I{g(øx

Ii )λøx ti or(7) forsomeatomic functiongθGwhereI i selectssomesub- jectofthe indicesandt i $θIselectstheepigr aphvariable. Again,thekey pointhereis thatalthoughatomgθGad- mitsefÞcient operators,thefunctionsf i madeupof com- positionsofthese functionscanbe muchmorecomple x (onesimplee xamplefora robustSVMisbelow). Butthe theoremstates thattheproblem canbetransformed intoan equivalentonethatonlyrequiresproximaloperators and epigraphprojectionsfor functionsin theatomset G. Theproof ofTherem1 isstraightforw ard,but requires aslightlymore formaldeÞnitionof therepresentationof DCPfunctions;we describethisonly brießyhere,with moredetailabout DCPsingeneral available inGrantet al. (2006).Each DCPfunctionis representedasa expression tree,whereeach non-leafnodein thetreemust beaDCP atom(whichitself canbe eitherconv ex,conca ve,or afÞne), andeachleaf nodemustbe av ariableora constant.For ex- ample,anθ robustSVM(seeAppendix A.4fordetails aboutthederi vationof thisobjectiveterm)canbewritten astheoptimization problem minimize 2 2 2 m i=1 max{0,1&y i T x i +%P T 1 (8) 2 2

θbmKλKt{0,á}+1θλáλ

2

θθ#/B;(y)XθP

T Figure1.ADCPe xpressiontreerepresenting anθθrobustSVM optimizationobjectiv e. Figure1sho wstheDCP expressiontreeforthisobjecti ve: 2 2 1 ,andmax{0,á}atomsarecon vex, thesum,+ and'atomsareaf Þne(the'atomunderDCP musthav e aconstanton oneside), theleafnode #isav ariable,and theλ,1,&diag(y)XandP T leafnodesare constants.

ProofofTheorem1. Theproofproceeds byconsidering

eachDCPfunction f i asane xpressiontree ofdepthn, andemploys atypeofÒbottomupÓ reductiontoreduce thetreeto oneofle veln&1,plussome additionalequal- ityandepigraph constraints.We selectsomeleaf node atlev eln,whichwe denotel 1 andconsiderits immedi- ateparentgandsiblings,l 2 ,...,l n .We introduceanew variable land,basedupon whethergisafÞne, convex,or concave,weaddtheconstraintg(l 1 ,...,l n l: weaddan equalityconstraintfor gafÞneandplacethese constraintsintothe

Aøx=

bmatrix;andwe addλcon- straintsfor gconvexand(constraintsfor gconcave, andintroduce theappropriateepigraph indicatorfunctions f i =I{g(l 1 ,...,l n l}inthesetw ocases. Finally, wereplacethe entiresubtreewith the lvariable.Werepeat thisprocessfor allleav esatle veln,resultingin anequiv a- lentexpression treeofdepthn&1(plusadditionalequality constraintsandepigraph indicators). Whenwereach theroot nodeofthe treeforthe objective functionf 0 ,wesimply addthee xpressionitself asafunc- tion f i =g(orbyw ayofoptimization, weimmediately terminateifthe rootnode isanaddition operatorandthe nodesatdepth 2alreadyha veef Þcientproximaloperators orepigraphprojections). For therootnodes ofexpres- siontreesfor f i ,i(1,weadd theepigraphconstraint f i =I(g(l 1 ,...,l n l)plustheconstraint l=0.

ExampleThetheoremis bestillustratedby example,so

weconsiderhere howwe canusethis approachtotrans- formtherob ustSVM problem(8).Thisobjectiv ecom- posesthehinge loss,alinear functionofthe parameters#, andan θ 1 norminsidethe hingeloss,and thereisno prox- Epigraphprojections forfastgeneralconv exprogramming imaloperator thatcanbe applieddirectlyto theentiretop- levelobjectiveterms.Howe ver,theobjectivestill admitsa

DCPformulation,as shownin Figure1,and applyingthe

operationsfromTheorem 1(using atomsforthe squared 2 norm,hingefunction max{0,á},andθ 1 norm)resultsi n thenew variablesandconstraints l 1 θP T x= l 1 l 2quotesdbs_dbs17.pdfusesText_23