[PDF] Corrigé du baccalauréat S Métropole–La Réunion 21 juin 2019

Corrigé du baccalauréat S Métropole–La Réunion 21 juin 2019 Exercice 1 6 points



Previous PDF Next PDF





Corrigé du baccalauréat S Métropole–La Réunion 21 juin 2019

Corrigé du baccalauréat S Métropole–La Réunion 21 juin 2019 Exercice 1 6 points





Sujets bac 93 maths ce corriges Telecharger, Lire - Canal Blog

e dans le 93 6 juin 2017 Bac 2017 : les sujets et corrigés de maths du bac S tombés au Liban



Sujet et corrigé du bac en mathématiques, série S - Freemaths

Mathématiques Bac 2016 alainpiller Maths Amérique du Nord 2016 Maths s 2016



Corrigé officiel complet du bac S Physique - Sujet de bac

alités de l'épreuve de sciences physiques du baccalauréat général, série S, à compter de la 





ANNALES DE MATHEMATIQUES

du baccalauréat S 2000 2 Lycée Louis Armand Page 3 Annales du baccalauréat S 2000

[PDF] bac s corrigé 2015

[PDF] bac s corrigé espagnol

[PDF] bac s corrigé histoire 2015

[PDF] bac s corrigé maths

[PDF] bac s corrigé maths 2015

[PDF] bac s corrigé philo 2015

[PDF] bac s corrigé physique chimie

[PDF] bac s corrigé svt

[PDF] bac s ecole de commerce

[PDF] bac s économie

[PDF] bac s economie et gestion

[PDF] bac s english

[PDF] bac s français 2009

[PDF] bac s français 2010

[PDF] bac s français 2010 corrigé

Durée : 4 heures

?Corrigé du baccalauréat S Métropole-La Réunion 21 juin 2019?

Exercice 16 points

Commun à tous les candidats

Partie A

On considère la fonctionfdéfinie sur l"ensembleRdes nombres réels par : f(x)=7

2-12?ex+e-x?

1. a.limx→+∞ex=+∞; limx→+∞e-x=0car e-x=1

exdoncpar somme etproduit,limx→+∞f(x)=-∞. b.Pour toutx,f?(x)=-1

2?ex-e-x?.

Sur ]0 ;+∞[,x>0 doncx> -x. Comme la fonction exponentielle est strictement crois- santesurR,ona ex>e-xcequientraineque ex-e-x>0etdoncque-1

2?ex-e-x?<0.

Doncf?(x)<0 sur ]0 ;+∞[ donc la fonctionfest strictement décroissante sur [0 ;+∞[. c.fest continue :f(0)=7

2-12(1+1)=72-1=52>0 et limx→+∞f(x)= -∞. Il existe donc un

réelx>0 tel quef(x)<0; par exemplef(2)≈-0,26. Pour toutxde ]2 ;+∞[, on af(x)2.Pour toutx?R,f(-x)=7

2-12?e-x+ex?=72-12?ex+e-x?=f(x).

Doncfest une fonction paire.

On a vu qu"il existeα?[0 ;+∞[ unique tel quef(α)=0. Orf(-α)=f(α)=0. Donc-α?]-∞; 0] vérifief(-α)=0.

S"il y avait une autresolutionβ?=-αdans ]-∞; 0[, alors-βserait une deuxième solution dans

]0 ;+∞[, ce qui n"est pas possible. Conclusion : l"équation dansR,f(x)=0 a exactement deux solutions opposéesαet-α.

Partie B

Lesserres en forme de tunnelsont fréquemment utilisées pour la culture des plantes fragiles; elles

limitent les effets des intempéries ou des variations de température.

Elles sont construites à partir de plusieurs arceaux métalliques identiques qui sont ancrés au sol et

supportent une bâche en plastique.

Le plan est rapporté à un repère orthonormé d"unité 1 mètre. La fonctionfet le réelαsont définis

dans lapartie A. Dans la suite de l"exercice, on modélise un arceau de serre par la courbeCde la fonctionfsur l"intervalle [-α;+α]. On a représenté ci-dessous la courbeCsur l"intervalle [-α;+α].

Baccalauréat SA. P. M. E. P.

1 2 3-1-2-31

23
hauteurC On admettra que la courbeCadmet l"axe des ordonnées pour axe de symétrie.

1.La hauteur d"un arceau estf(0)=

5 2.

2. a.Pour toutx?R, 1+?f?(x)?2=1+?

-1

2?ex-e-x??2

=1+(ex-e-x)24=1+e2x-2+e-2x4=

4+e2x-2+e-2x

4=e2x+2+e-2x4=14?ex+e-x?2=?ex+e-x2?

2 b.Alors :I=? 0?

1+?f?(x)?2=?

0? ex+e-x2? dx=12(G(α)-G(0))oùGest une primitive dex?→ex+e-x.

On a :G(x)=ex-e-x.

Alors :I=1

2[G(α)-G(0)]=12?eα-e-α?

Puisque la fonctionfest paire, la courbeCfest symétrique par rapport à l"axe?Oy?,

L=2I=eα-e-α

Partie C

On souhaite construire une serre de jardin en forme de tunnel.

On fixe au sol quatre arceaux métalliques, dont la forme est celle décrite dans la partie précédente,

espacés de 1,5 mètre, comme indiqué sur le schéma ci-dessous. Surlafaçadesud,onprévoituneouverturemodélisée surleschémaparlerectangleABCDdelargeur

1 mètre et de longueur 2 mètres.

Métropole-La RéunionPage 2/1121 juin 2019

Baccalauréat SA. P. M. E. P.

1m50 CB DA

Façade sudFaçade nord

On souhaite connaître la quantité, exprimée en m2, de bâche plastique nécessaire pour réaliser cette

serre.

Cette bâche est constituée de trois parties, l"une recouvrant la façade nord, l"autre la façade sud (sauf

l"ouverture), la troisième partie de forme rectangulaire recouvrant le toit de la serre.

1.Les façades Nord et Sud ont chacune une aire égale à?

-αf(x) dx=2? 0 f(x) dx.

L"aire de l"ouverture vaut 2, doncla quantité debâche nécessaire pour recouvrir les façades sud

et nord est donnée, en m

2, par :

A=4? 0 f(x)dx-2

2.f(x)=7

2-12?ex+e-x?.

Une primitive defest définie parF(x)=7

2x-12?ex-e-x?.

Alors :A=4?

0 f(x) dx-2=4[F(α)-F(0)]-2.

F(α)=7

2α-12?eα-e-α?.

F(0)=0

A=14α-2?eα-e-α?-2.

L"aire de la bâche latérale est celle d"un rectangle, de longueur 3×1,50=4,5 m et de largeurL,

avecL=2I(voir la partie B). Cette aire est donc égale à 4,5L=4,5?eα-e-α?. L"aire totale de la bâche plastique nécessaire est : 42m2.

Métropole-La RéunionPage 3/1121 juin 2019

Baccalauréat SA. P. M. E. P.

Exercice 25 points

Commun à tous les candidats

Une plateforme informatique propose deux types dejeux vidéo : un jeu de typeAet un jeu detypeB.

Partie A

Les durées des parties de typeAet de typeB, exprimées en minutes, peuvent êtremodélisées respec-

tivement par deux variables aléatoiresXAetXB. La variable aléatoireXAsuit la loi uniforme sur l"intervalle [9 ; 25]

La variable aléatoireXBsuit la loi normale de moyenneμet d"écart type 3. La représentation gra-

phique de la fonction de densité de cette loi normale et son axe de symétrie sont donnés ci-dessous.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2800,050,100,15

1. a.La durée moyenne d"une partie de typeAestE(XA)=9+252=17.

b.Lacourbereprésentative deladensité correspondantàlaloi normale apour axe desymé- trie la droite d"équationx=17, donc la durée moyenne d"une partie de typeBestμ=17 minutes.

2.•Avec le jeu de typeA, on a :P(XA?20)=20-9

25-9=1116=0,6875.

1

2+0,682≈0,84 au centième près.

Comme on choisit de manière équiprobable le jeu, la probabilité cherchée est P (XA?20)+P(XB?20)

2≈0,76au centième près.

Partie B

On admet que, dès que le joueur achève une partie, la plateforme lui propose une nouvelle partie

selon le modèle suivant : — silejoueurachèveunepartiedetypeA,laplateformeluiproposedejouerànouveauunepartie de typeAavec une probabilité de 0,8; — silejoueurachèveunepartiedetypeB,laplateformeluiproposedejouerànouveauunepartie de typeBavec une probabilité de 0,7.

Métropole-La RéunionPage 4/1121 juin 2019

Baccalauréat SA. P. M. E. P.

Pour une entier naturelnsupérieur ou égal à 1, on noteAnetBnles évènements : A n: "lan-ième partie est une partie de typeA.» B n: "lan-ième partie est une partie de typeB.»

Pour tout entier naturelnsupérieur ou égal à 1, on noteanla probabilité de l"évènementAn.

1. a.Recopier et compléter l"arbre pondéré ci-contre

A n an ?An+10,8 ?Bn+11-0,8=0,2 Bn

1-an?An+11-0,7=0,3

?Bn+10,7

b.D"après la formule des probabilités totales, on a :P(An+1)=PAn(An∩An+1)+PBn(Bn∩An+1)=0,8an+0,3(1-an)=0,5an+0,3 donc

an+1=0,5an+0,3

Dans la suite de l"exercice, on noteala probabilité que le joueur joue au jeuAlors de sa première

partie, oùaest un nombre réel appartenant à l"intervalle [0 ; 1]. La suite(an)est donc définie par :

a

1=a, et pour tout entier natureln?1,an+1=0,5an+0,3.

2.Étude d"un cas particulier.Dans cette question, on suppose quea=0,5.

a.Montrons par récurrence, que pour tout entier natureln?1, on a : 0?an?0,6 :

•Initialisation :a1=a=0,5 donc 0?a1?0,6

•Hérédité : on suppose 0?an?0,6 pour une valeur quelconque den?1. Alors : 0?0,5×an?0,5×0,6 donc 0?0,5an?0,3 d"où, en ajoutant 0,3 :

0,3?0,3+0,5an?0,6 et par conséquent : 0?an+1?0,6.

La propriété est vraie au rangn+1.

La propriété est vraie au rang 1 et, si elle est vraie à un rangnquelconque elle est vraie au

rang suivantn+1 : d"après le principe de récurrence, elle est vraie pour toutn?1. b.Pour toutn?1,an+1-an=0,5an+0,3-an=-0,5an+0,3. Or, d"après la question précédente, on a :

0?an?0,6?0?0,5an?0,3? -0,3?-0,5an?0?0?-0,5an+0,3?0,3 donc

a n+1-an?0.

La suite est donc croissante.

c.La suite est croissante et majorée par 0,6, donc, d"après le théorème de la convergence

monotone, la suite est convergente vers une limite??0,6. lim n→+∞an+1=limn→+∞an=?; limn→+∞(0,5an+0,3)=0,5?+0,3. Par unicité de la limite, on a : 0,5?+0,3=?donc 0,3=0,5?qui donne ?=0,6.

La suite

(an)converge vers 0,6.

3.Étude du cas général.Dans cette question, le réelaappartient à l"intervalle [0 ; 1].

On considère la suite (un) définie pour tout entier natureln?1 parun=an-0,6. a.Pour toutn,un+1=an+1-0,6=0,5an+0,3-0,6=0,5an-0,3=0,5(an-0,6)=0,5undonc un+1=0,5un.

La suite

(un)est donc géométrique de raisonq=0,5 et de premier termeu1=a1-0,6= a-0,6.

Métropole-La RéunionPage 5/1121 juin 2019

Baccalauréat SA. P. M. E. P.

b.Puisque(un)est géométrique,un=u1qn-1=(a-0,6)×0,5n-1(n?1).

Commeun=an-0,6, on a :an=un+0,6=

an=(a-0,6)×0,5n-1+0,6. c.-1<0,5<1 donc limn→+∞0,5n-1=0 d"où, par produit et par somme, limn→+∞un=0,6.

Cette limite ne dépend pas de la valeur dea.

d.Sur le long terme, la probabilité que le joueur fasse une partie de typeAest 0,6 et donc celle qu"il fasse une partie de typeBest 0,4. Le joueur verra plus souvent la publicité insé-quotesdbs_dbs4.pdfusesText_7