[PDF] [PDF] Nombres complexes - Exo7 - Exercices de mathématiques

Calculer les racines carrées de 1, i, 3+4i, 8-6i, et 7+24i Indication Τ Calculer la somme Sn = 1+z+z2 +···+zn Indication Τ côtés inscrit dans le cercle unité 9 



Previous PDF Next PDF





[PDF] Racines n-i`emes dun nombre complexe Racines de lunité

tout entier n = 0, tout nombre complexe non nul poss`ede n racines n-i`emes Si θ est un argument de a, alors cet angle a pour mesure θ + 2kπ n Plus généralement, la somme des racine n-i`emes d'un nombre complexe est nulle (n > 1)



[PDF] Sommes de racines de lunité - Numdam

On sait que les racines N-ièmes de l'unité engendrent les entiers de com- me groupe (A) p est représentable comme somme de n racines de l'unité ~n 2) ;



[PDF] LEÇON N˚ 20 : Racines n-ièmes dun nombre - capes-de-maths

Théorème 1 : L'équation complexe zn = Z admet n racines distinctes Définition 2 : On désigne l'ensemble des racines n-ièmes de l'unité par Un = { On utilise l' application 2 ci-dessus, ou la somme des cinq premiers termes d'une suite Le théorème de Pytagore nous assure alors que l'hypothénuse mesure √5/4 On



[PDF] Chapitre 3 :Les complexes

e est l'unique point M du cercle unité tel qu'une mesure de l'angle orienté ( somme des puissances p-ièmes des racines n-ièmes de 1) On a : │ ⎩ │ ⎨ ⎧



[PDF] 102- Groupe des nombres complexes de module 1 Sous-groupes

formule d'Euler, ex : somme des termes d'une progression géométrique, racine nième de l'unité alors φn(X) est le polynôme minimal de ω, ex : X4 + 1 est morphe et homéomorphe à U, appli : mesure des angles, thm : réduction des 



[PDF] 1 Nombres complexes - LAMA

Dans le plan complexe orienté, un argument de z est une mesure de l'angle orienté (u, 13 C'est la somme des racines 5-ièmes de l'unité : elle est nulle



[PDF] Nombres complexes - Exo7 - Exercices de mathématiques

Calculer les racines carrées de 1, i, 3+4i, 8-6i, et 7+24i Indication Τ Calculer la somme Sn = 1+z+z2 +···+zn Indication Τ côtés inscrit dans le cercle unité 9 



[PDF] Leçon 02 - Concours Agrégation, Mathématiques générales

−1 et de matrices de rotations planes de mesure d'angle θi avec 0 < θi < π Exercice 3 Somme des racines primitives n-i`emes de l'unité, [F M 2] question 2



[PDF] 113 : Groupe des nombres complexes de module 1 - Ceremade

6 mai 2010 · Sous-groupes des racines de l'unité de l'unité est de la forme f(t) = eiαt On appelle transformée de Fourier de la mesure µ l'application ξ 



[PDF] NOMBRES COMPLEXES

Ces solutions sont des nombres complexes, c'est-à-dire qui sont la somme d'un nombre Rien n'empêche d'utiliser une mesure en degrés de l'argument Le réel 1 admet n racines nèmes distinctes (racines nèmes de l'unité) données par

[PDF] fiche bilan poesie pdf

[PDF] hépatite transmission salive

[PDF] hépatite virale contagieuse ou pas

[PDF] transmission hepatite c par la salive

[PDF] hépatite transmission sang

[PDF] cause d une hepatite virale

[PDF] contagion hépatite b

[PDF] transmission hepatite virale

[PDF] mode de transmission hépatite c

[PDF] racine cubique de i

[PDF] apparition de la vie sur terre date

[PDF] racine cubique calculatrice casio

[PDF] racine cubique geogebra

[PDF] habitat et logement définition

[PDF] fiche biographique voltaire

[PDF] Nombres complexes - Exo7 - Exercices de mathématiques Exo7

Nombres complexes

1 Forme cartésienne, forme polaire

Exercice 1Mettre sous la formea+ib(a;b2R) les nombres :

3+6i34i;1+i2i

2 +3+6i34i;2+5i1i+25i1+i: Écrire sous la formea+ibles nombres complexes suivants : 1.

Nombre de module 2 et d"ar gumentp=3.

2.

Nombre de module 3 et d"ar gumentp=8.

Calculer le module et l"argument deu=p6ip2

2 etv=1i. En déduire le module et l"argument dew=uv Déterminer le module et l"argument des nombres complexes : e eiaeteiq+e2iq: Exercice 5Calculer les racines carrées de 1;i;3+4i;86i;et 7+24i. 1.

Calculer les racines carrées de

1+ip2 . En déduire les valeurs de cos(p=8)et sin(p=8). 2.

Calculer les v aleursde cos (p=12)et sin(p=12).

1

Résoudre dansCles équations suivantes :

z

2+z+1=0 ;z2(1+2i)z+i1=0 ;z2p3zi=0 ;

z

2(514i)z2(5i+12) =0 ;z2(3+4i)z1+5i=0 ; 4z22z+1=0 ;

z

4+10z2+169=0 ;z4+2z2+4=0:

Exercice 8Calculer la sommeSn=1+z+z2++zn.

1.

Résoudre z3=1 et montrer que les racines s"écrivent 1,j,j2. Calculer 1+j+j2et en déduire les racines

de 1+z+z2=0. 2.

Résoudre zn=1 et montrer que les racines s"écrivent 1;e;:::;en1. En déduire les racines de 1+z+z2+

+zn1=0. Calculer, pourp2N, 1+ep+e2p++e(n1)p.

Trouver les racines cubiques de 22iet de 11+2i.

1. Soient z1,z2,z3trois nombres complexes distincts ayant le même cube.

Exprimerz2etz3en fonction dez1.

2. Donner ,sous forme polaire, les solutions dans Cde : z

6+(7i)z388i=0:

(Indication : poserZ=z3; calculer(9+i)2)

4 Géométrie

Exercice 12Déterminer l"ensemble des nombres complexesztels que : 1. z3z5 =1; 2. z3z5 =p2 2 Montrer que pouru;v2C, on aju+vj2+juvj2=2(juj2+jvj2):Donner une interprétation géométrique.

Soit(A0;A1;A2;A3;A4)un pentagone régulier. On noteOson centre et on choisit un repère orthonormé

(O;!u;!v)avec!u=!OA0, qui nous permet d"identifier le plan avec l"ensemble des nombres complexesC.A0 A 3 A 4A 1 A 2 O

1i1.Donner lesaffixesw0;:::;w4despointsA0;:::;A4. Montrerquewk=w1kpourk2f0;1;2;3;4g. Montrer

que 1+w1+w21+w31+w41=0. 2.

En déduire que cos (2p5

)est l"une des solutions de l"équation 4z2+2z1=0. En déduire la valeur de cos(2p5 3. On considère le point Bd"affixe1. Calculer la longueurBA2en fonction de sinp10 puis dep5 (on remarquera que sin p10 =cos2p5 4.

On cons idèrele point Id"affixei2

, le cercleCde centreIde rayon12 et enfin le pointJd"intersection de Cavec la demi-droite[BI). Calculer la longueurBIpuis la longueurBJ.

5.Application:Dessiner un pentagone régulier à la règle et au compas. Expliquer.

5 Trigonométrie

Exercice 15Soitzun nombre complexe de moduler, d"argumentq, et soitzson conjugué. Calculer(z+z)(z2+z

2):::(zn+z

n)en fonction deretq. En utilisant les nombres complexes, calculer cos5qet sin5qen fonction de cosqet sinq.

Exercice 17SoitZ[i] =fa+ib;a;b2Zg.

1. Montrer que si aetbsont dansZ[i]alorsa+betable sont aussi. 2.

T rouverles élements in versiblesde Z[i], c"est-à-dire les élémentsa2Z[i]tels qu"il existeb2Z[i]avec

ab=1. 3. Vérifier que quel que soit w2Cil existea2Z[i]tel quejwaj<1. 4.

Montrer qu"il e xistesur Z[i]une division euclidienne, c"est-à-dire que, quels que soientaetbdansZ[i]

il existeqetrdansZ[i]vérifiant : a=bq+ravecjrj2¯z2¯z2=z1¯z2jz2j2.Indication pourl"exer cice2 NIl faut bien connaître ses formules trigonométriques. En particulier si l"on connait cos(2q)ou sin(2q)on sait

calculer cosqet sinq.Indication pourl"exer cice3 NPassez à la forme trigonométrique. Souvenez-vous des formules sur les produits de puissances :

e

iaeib=ei(a+b)eteia=eib=ei(ab):Indication pourl"exer cice4 NPour calculer un somme du typeeiu+eivil est souvent utile de factoriser pareiu+v2

.Indication pourl"exer cice5 NPourz=a+ibon cherchew=a+ibtel que(a+ib)2=a+ib. Développez et indentifiez. Utilisez aussi que

jwj2=jzj.Indication pourl"exer cice6 NIl s"agit de calculer les racines carrées de 1+ip2 =eip4

de deux façons différentes.Indication pourl"exer cice7 NPour les équation du typeaz4+bz2+c=0, poserZ=z2.Indication pourl"exer cice8 NCalculer(1z)Sn.Indication pourl"exer cice12 NLe premier ensemble est une droite le second est un cercle.

Indication pour

l"exer cice

13 NPour l"interprétation géométrique cherchez le parallélogramme.

Indication pour

l"exer cice

15 NUtiliser la formule d"Euler pour faire apparaître des cosinus.

Indication pour

l"exer cice

16 NAppliquer deux fois la formule de Moivre en remarquantei5q= (eiq)5.5

Correction del"exer cice1 NRemarquons d"abord que pourz2C,zz=jzj2est un nombre réel, ce qui fait qu"en multipliant le dénominateur

par son conjugué nous obtenons un nombre réel. =35 +65
i:

Calculons

1+i2i=(1+i)(2+i)5

=1+3i5 et 1+i2i 2 =1+3i5 2 =8+6i25 =825 +625
i: Donc 1+i2i 2 +3+6i34i=825 +625
i35 +65
i=2325 +3625
i:

Soitz=2+5i1i. Calculonsz+z, nous savons déjà que c"est un nombre réel, plus précisément :z=32

+72
iet doncz+z=3.Correction del"exer cice2 N1.z1=2eip3 =2(cosp3 +isinp3 ) =2(12 +ip3 2 ) =1+ip3.

2.z2=3eip8

=3cosp8

3isinp8

=3p2+p2 2

3ip2p2

2 Il nous reste à expliquer comment nous avons calculé cos p8 et sinp8 : posonsq=p8 , alors 2q=p4 et donc cos(2q)=p2 2 =sin(2q). Mais cos(2q)=2cos2q1. Donc cos2q=cos(2q)+12 =14 (2+p2). Et ensuite sin

2q=1cos2q=14

(2p2). Comme 06q=p8 6p2 , cosqet sinqsont des nombres positifs. Donc cos p8 =12 q2+p2;sinp8 =12 q2p2:Correction del"exer cice3 NNous avons u=p6p2i2 =p2 p3 2 i2 =p2 cosp6 isinp6 =p2eip6 puis v=1i=p2eip4

Il ne reste plus qu"à calculer le quotient :

uv =p2eip6p2eip4 =eip6 +ip4 =eip12 :Correction del"exer cice4 ND"après la formule de Moivre poureianous avons : e eia=ecosa+isina=ecosaeisina: Orecosa>0 donc l"écriture précédente est bien de la forme "module-argument". 6

De façon générale pour calculer un somme du typeeiu+eivil est souvent utile de factoriser pareiu+v2

. En effet e iu+eiv=eiu+v2 eiuv2 +eiuv2 =eiu+v2

2cosuv2

=2cosuv2 eiu+v2 Ce qui est proche de l"écriture en coordonées polaires.

Pour le cas qui nous concerne :

z=eiq+e2iq=e3iq2 h eiq2 +eiq2 i =2cosq2 e3iq2 Attention le module dans une décomposion en forme polaire doit être positif ! Donc si cos q2quotesdbs_dbs33.pdfusesText_39