[PDF] [PDF] Real forward and inverse FFT - Jens Hee

14 mar 2014 · 2 The Discrete Fourier Transform of real valued signals 2 2 1 Some definitions 2 4 Inverse DFT given a real values signal



Previous PDF Next PDF





[PDF] Inverse Discrete Fourier transform (DFT)

5 fév 2019 · The result in Theorem 1 is important because it tells us that a signal x can be recovered from its DFT X by taking the inverse DFT This im- plies 



[PDF] Discrete Fourier Transform (DFT)

DFT The inverse DFT is given by: x(n) = 1 N N−1



[PDF] The Discrete Fourier Transform - Eecs Umich

Then take the inverse DFT of X[k] (using the inverse FFT) to get (hopefully) the signal x[n] Does this approach always work? No Why not? Because the DFT/ DTFT 



[PDF] Lecture 7 - The Discrete Fourier Transform

i e the inverse matrix is `X times the complex conjugate of the original (symmet- ric) matrix Note that the 2йХ coefficients are complex We can assume that the ¢ © 



[PDF] Introduction to DFT - UPF

(2) is the inverse Fourier Transform equation ➤ (1) is the Fourier Transform equation Note that X(jw) is called the spectrum or the frequency domain



[PDF] 2D Discrete Fourier Transform (DFT)

Find Y[r] as the product of F[r] and H[r] (which are the DFTs of the corresponding zero-padded signals) • Find the inverse DFT of Y[r] • Allows to perform linear 



[PDF] Real forward and inverse FFT - Jens Hee

14 mar 2014 · 2 The Discrete Fourier Transform of real valued signals 2 2 1 Some definitions 2 4 Inverse DFT given a real values signal



On computing the inverse DFT - IEEE Xplore

Abstract-This correspondence indicates a (possibly) new method for computing an inverse discrete Fourier transform (IDFT) through the use of a forward DFT 



[PDF] 1 11 The DFT matrix

20 jan 2016 · where the DFT (i e , the discrete Fourier transform) matrix is defined by DFT matrix and its inverse, obtaining O(nlog n) fast Fourier transform 

[PDF] inverse discrete fourier transform example problem

[PDF] inverse dtft examples and solutions

[PDF] inverse fft

[PDF] inverse fourier transform code matlab

[PDF] inverse fourier transform of delta function

[PDF] inverse fourier transform properties table

[PDF] inverse fourier transform table

[PDF] inverse laplace of cot^ 1/s a

[PDF] inverse laplace of s/(s^4 s^2+1)

[PDF] inverse laplace transform formula

[PDF] inverse laplace transform formula pdf

[PDF] inverse laplace transform of 1/(s^2+a^2)

[PDF] inverse laplace transform of 1/s+a

[PDF] inverse matrix 3x3 practice problems

[PDF] inverse matrix bijective

Real forward and inverse FFT

by

Jens Hee

https://jenshee.dk

March 2014

Change log

14. March 2014

1. Document started.

13. March 2020

1. Meta data added.

i

Contents

1 The Discrete Fourier Transform 1

1.1 Denition of the Discrete Fourier transform . . . . . . . . . . . . . . . . . . . . . 1

2 The Discrete Fourier Transform of real valued signals 2

2.1 Some denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Forward DFT of a real values signal . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Real DFT step by step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4 Inverse DFT given a real values signal . . . . . . . . . . . . . . . . . . . . . . . . 3

2.5 Real IDFT step by step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Program examples 5

ii

Chapter 1

The Discrete Fourier Transform

1.1 Denition of the Discrete Fourier transform

The denition of the Discrete Fourier transform (DFT) used in the following is given by:

X(k) =DFTNfx(n)g=N1X

n=0x(n)ej2N kn; k= 0;:::;N1 The Inverse Discrete Fourier transform (IDFT) is dened by: x(n) =IDFTNfX(k)g=1N N1X k=0X(k)ej2N nk

IDFT can be calculated from the DFT as follows:

x(n) =IDFTNfX(k)g=1N

DFTNfX(k)g

1

Chapter 2

The Discrete Fourier Transform of real

valued signals

2.1 Some denitions

In the next sections the following denitions are used: x

1(n) =x(2n)

x

2(n) =x(2n+ 1)

X

1(k) =DFTN=2fx1(n)g

X

2(k) =DFTN=2fx2(n)g

y(n) =x1(n) +jx2(n)

Y(k) =DFTN=2fy(n)g

2.2 Forward DFT of a real values signal

Given a real valued signalx(n),X(k) can be calculated as:

X(k) =N1X

n=0x(n)ej2N kn N=21X n=0x(2n)ej2N k2n+N=21X n=0x(2n+ 1)ej2N k(2n+1) N=21X n=0x

1(n)ej2N=2kn+N=21X

n=0x

2(n)ej2N=2knej2N

k =X1(k) +X2(k)ej2N k

Sincex1andx2are real valued:

Y(k) =X1+jX2

Y re=X1r Y ro=X2i Y ie=X2r Y io=X1i where: Y reis the even part of the real part ofY Y rois the odd part of the real part ofY 2 Y ieis the even part of the imaginary part ofY Y iois the odd part of the imaginary part ofY

X(k) is nally given by:

X(k) =X1r(k) +jX1i(k) + (X2r(k) +jX2i)ej2N

k =Yre(k) +jYio(k) + (Yie(k)jYro(k))ej2N k = 0:5(Yr(k) +Yr(N=2k) +j(Yi(k)Yi(N=2k)) +(Yi(k) +Yi(N=2k)j(Yr(k)Yr(N=2k)))ej2N k) = 0:5((Yr(k) +jYi(k))(1jej2N k) + (Yr(N=2k)jYi(k))(1 +jej2N k)) =Y(k)A(k) +Y(N=2k)B(k) where:

A(k) = 0:5(1jej2N

k)

B(k) = 0:5(1 +jej2N

k) Note:

X(0) =Y(0)(1j) +Y(N=2)(1 +j) =Yr(0) +Yi(0)

X(N=2) =Y(N=2)(1 +j) +Y(0)(1j) =Yr(0)Yi(0)

2.3 Real DFT step by step

1. Form the complex signaly(n). This is straight forward since the complex input to an FFT is

often ordered as pairs of real and imaginary values, so no reordering of the input is necessary.

2. Do an N/2-point DFT using an N/2-point FFT.

3. Calculate the two arraysA(k) andB(k) for 0k < N=2.

4. Combine the spectral valuesY(k) withA(k) andB(k) to formX(k) for 0k < N=2.

UsualyX(k) is zero at half the samplig frequency andX(N=2) need not be calculated.

2.4 Inverse DFT given a real values signal

Given a spectrumX(k) of a real valued signalx(n),y(n) can be calculated as: y(n) =x(2n) +jx(2n+ 1) 1N N1X k=0X(k)ej2N

2nk+j1N

N1X k=0X(k)ej2N (2n+1)k 1N N1X k=0X(k)(1 +jej2N k)ej2N=2nk 1N N=21X k=0X(k)(1 +jej2N k)ej2N=2nk+1N N=21X k=0X(k+N=2)(1 +jej2N (k+N=2))ej2N=2n(k+N=2) 1N N=21X k=0X(k)(1 +jej2N k)ej2N=2nk+1N N=21X k=0X(k+N=2)(1jej2N k)ej2N=2nk 3

SinceX(k) =X(Nk) we have:

y(n) =1N=2N=21X k=00:5X(k)(1 +jej2N k)ej2N=2nk+1N=2N=1X k=00:5X(N=2k)(1jej2N k)ej2N=2nk

1N=2N=21X

k=0(X(k)A(k) +X(N=2k)B(k))ej2N=2nk

Y(k) =X(k)A(k) +X(N=2k)B(k)

whereAandBare dended above. Note:

Y(0) = 0:5(1 +j)X(0) + 0:5(1j)X(N=2)

2.5 Real IDFT step by step

1. Calculate the two arraysA(k) andB(k) for 0k < N=2.

2. Combine the spectral valuesX(k) withA(k) andB(k) to formY(k) for 0k < N=2.

UsualyX(k) is zero at half the samplig frequency and the last term inY(0) need not be taken into account.

3. Do an N/2-point IDFT ofY(k) using an N/2-point IFFT.

4. If the complex input and output to the FFT is ordered as pairs of real and imaginary values,

then no reordering of the output is necessary. 4

Chapter 3

Program examples

#include "math.h" static double pi = 4.0 * atan(1.0); void FFT(int M, double* X) const int N = (int)floor(pow(2.0, M) + 0.5); double wcos; double wsin; double ucos; double usin; int N2 = N >> 1; int L1 = N; int L2; for (int L = 0; L < M; L++)

L2 = L1 >> 1;

wcos = 1; wsin = 0; ucos = cos(pi / L2); usin = -sin(pi / L2); for (int J = 0; J < L2; J++) for (int I = J; I < N; I = I + L1) int Ir = 2 * I; int Ii = Ir + 1; int L22 = 2 * L2; double sumRe = X[Ir] + X[Ir + L22]; double sumIm = X[Ii] + X[Ii + L22]; double diffRe = X[Ir] - X[Ir + L22]; double diffIm = X[Ii] - X[Ii + L22];

X[Ir + L22] = diffRe * wcos - diffIm * wsin;

X[Ii + L22] = diffRe * wsin + diffIm * wcos;

X[Ir] = sumRe;

X[Ii] = sumIm;

double w = wcos * ucos - wsin * usin; wsin = wcos * usin + wsin * ucos; wcos = w;

L1 = L1 >> 1;

int K; int J = 0; int N1 = N - 1; 5 for (int I = 0; I < N1; I++) if (I < J) int Jr = 2 * J; int Ji = Jr + 1; int Ir = 2 * I; int Ii = Ir + 1; double TRe = X[Jr]; double TIm = X[Ji];

X[Jr] = X[Ir];

X[Ji] = X[Ii];

quotesdbs_dbs20.pdfusesText_26