[PDF] [PDF] EXERCICES DE CALCUL STOCHASTIQUE DESS IM Evry, option

DESS IM Evry, option finance Monique eX Exercice 1 2 3 Exponentielles Soit N une v a de loi N(0, 1) Calculer Exercice 1 6 4 Intégrale stochastique



Previous PDF Next PDF





[PDF] EXERCICES DE CALCUL STOCHASTIQUE DESS IM Evry, option

DESS IM Evry, option finance Monique eX Exercice 1 2 3 Exponentielles Soit N une v a de loi N(0, 1) Calculer Exercice 1 6 4 Intégrale stochastique



[PDF] Cours de Calcul stochastique DESS IM EVRY Option Finance

pour obtenir la v a Ψ(Y ) On verra d'autres propriétés de l'espérance conditionnelle dans le polycopié d'exercices On utilisera sans modération la formule E



[PDF] CALCUL STOCHASTIQUE 1 Rappels de probabilités Exercice 1

MASTER 2 - CALCUL STOCHASTIQUE EXERCICES - LISTE 1 1 Rappels de probabilités Exercice 1 Un restaurant peut servir 75 repas La pratique montre 



[PDF] MÉMOIRE MASTER

Dans ce chapitre, nous rappelons quelques résultats de calcul stochastique utilisés [3] Jeanblanc, M , Exercices de calcul stochastique DESS IM Evry, option



[PDF] Mouvement Brownien Martingales Et Calcul Stochastique By Jean

Martingales Mouvement Brownien Et Calcul Stochastique EXERCICES DE CALCUL STOCHASTIQUE DESS IM Evry Option Nance Mouvement Brownien



[PDF] Processus de Lévy et ljEquation Différentielle Stochastique

Option : Probabilités Un processus stochastique est un phénomène qui évolue dans le temps de manière Le deuxième chapitre est consacré à ljétude des calculs stochastiques qui sions,cours et exercices corrigés, DUNOD [5] Jeanblanc Monique (Septembre 2006) : Cours de calcul stochastique, Master 2IF EVRY



[PDF] Principe de Maximum Stochastique pour les équations

Option :Probabilités Par 1 4 Intégrale stochastique et formule d'Itô Les équations différentielles stochastiques (EDSs) représentent une Master 2IF EVRY [2] Léonard Gallardo :Mouvement brownien et calcul d'itô, cours et exercices 



[PDF] Université dEvry Val dEssonne DESS dIngéniérie - Free

3 7 Valorisation d'autres options exotiques (les calculs qui suivent 6 2 Formule BS avec taux d'intérêt stochastique T est la date d'exercice de l'option



[PDF] Modèle de Black et Scholes

Chapitre 2 : Calcul Stochastique et Modèle de Black et Scholes d'option pour l' alternative stochastique, nous tirons la formule et l'équation de Black - Scholes prix d'exercice K est une caractéristique fixe du contrat) à la date future T fixée [ 22]-M JEANBLANC «Cours de Calcul Stochastique», DESS IM EVRY Option

[PDF] Cours de calcul stochastique - Département de mathématiques

[PDF] Master MASS 1 Calcul Stochastique et Finance Feuille de TD no 4

[PDF] INTRODUCTION AU CALCUL STOCHASTIQUE

[PDF] Cours de calcul stochastique - Département de mathématiques

[PDF] methodes de valorisation des stocks - AUNEGE

[PDF] TAUX DE SURCOTISATION - TEMPS PARTIEL et TEMPS - CDG81

[PDF] circulaire temps partiel 2016-2017

[PDF] Aire totale des prismes

[PDF] notice explicative calcul des surfaces de plancher - Canohes

[PDF] Aire des polygones - Sylvain Lacroix

[PDF] Aire d 'un quadrilatère quelconque - Numdam

[PDF] SCM : Et si l 'on reparlait de gestion de stocks - Supply Chain

[PDF] Cas #8211 évaluation de la taille d 'une équipe commerciale Cas - Free

[PDF] Taille optimale de l 'équipe commerciale - MemoPage

[PDF] modalités de calcul des tarifs de péage au sein des - Asecap

EXERCICES DE CALCUL STOCHASTIQUE

DESS IM Evry, option ¯nance

Monique Jeanblanc

Octobre 2005

2

Contents

1 Rappels 7

1.1 Tribu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

1.2 Variables gaussiennes . . . . . . . . . . . . . . . . . . . . . . . . .

8 9

1.4 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

1.5 Temps d'arr^et . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

1.6 Temps discret . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 15

1.8 Divers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

2 Mouvement Brownien 17

17

2.2 Processus Gaussiens . . . . . . . . . . . . . . . . . . . . . . . . .

20

2.3 Multidimensionnel . . . . . . . . . . . . . . . . . . . . . . . . . .

21

2.4 Temps d'atteinte . . . . . . . . . . . . . . . . . . . . . . . . . . .

22

2.5 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25
26

2.7 Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28

2.8 Problµeme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29
29

2.8.2 Partie II . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

2.8.3 Partie III . . . . . . . . . . . . . . . . . . . . . . . . . . .

30
33

3.2 Formule d'It^o . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34

3.3 Cas multidimensionnel . . . . . . . . . . . . . . . . . . . . . . . .

39
40
42

3.6 Le crochet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

43

3.7 Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

44
3

4CONTENTS

49

4.2 Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

54
56

5 Exemples 59

5.1 Processus de Bessel . . . . . . . . . . . . . . . . . . . . . . . . . .

59
61

5.3 Autres processus. . . . . . . . . . . . . . . . . . . . . . . . . . . .

64

5.4 Des calculs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

64

6 Girsanov 67

67

6.2 Crochet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

69

6.3 Processus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

69

6.4 Cas multidimensionel . . . . . . . . . . . . . . . . . . . . . . . . .

75

6.5 Temps d'arr^et. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

76

6.6 Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

78
87
88
92

7.4 Temps local. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

92

7.5Lois. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

93

7.6 Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

94

7.7 Options barriµeres . . . . . . . . . . . . . . . . . . . . . . . . . . .

95
96

7.9 Divers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

96

8 Processus µa sauts 99

8.1 Processus de Poisson . . . . . . . . . . . . . . . . . . . . . . . . .

99
101

8.3 Formule d'It^o . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

102
103
103

1.1 Tribu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

107

1.2 Variables gaussiennes. . . . . . . . . . . . . . . . . . . . . . . . .

108
111

1.4 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

113

1.5 Temps d'arr^et . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

114

1.6 Temps discret . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

115
115

1.8 Divers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

115

CONTENTS5

117

2.2 Processus Gaussien . . . . . . . . . . . . . . . . . . . . . . . . . .

121

2.3 Multidimensionnel . . . . . . . . . . . . . . . . . . . . . . . . . .

124

2.4 Temps d'atteinte . . . . . . . . . . . . . . . . . . . . . . . . . . .

125

2.5 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

127
127

2.7 Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

129
131

3.2 Formule d'It^o . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

132

3.3 Cas multidimensionnel . . . . . . . . . . . . . . . . . . . . . . . .

137
138
139

3.6 Le crochet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

142

3.7 Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

142
145

4.2 Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

149
151

5.1 Processus de Bessel . . . . . . . . . . . . . . . . . . . . . . . . . .

153
155

5.3 Autres processus . . . . . . . . . . . . . . . . . . . . . . . . . . .

155

5.4 Des Calculs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

156
159

6.2 Crochet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

160

6.3 Processus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

160

6.4 Cas multidimensionnel . . . . . . . . . . . . . . . . . . . . . . . .

163

6.5 Temps d'arr^et . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

163

6.6 Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

165
167
168
168

7.4 Temps local. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

168

7.5Lois. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

170

7.6 Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

170

7.7 Options barriµeres . . . . . . . . . . . . . . . . . . . . . . . . . . .

171
172

6Rappels

8.1 Processus de Poisson . . . . . . . . . . . . . . . . . . . . . . . . .

175
177
178

Chapter 1

Rappels

1.1 Tribu

Exercice 1.1.1

Ensembles appartenant µa une tribu.

1. Montrer que siFest une tribu, et siAetBappartiennent µaFavec ne sont pas dansA. 2.

Montrer que 11

B¡A= 11B¡11A.

3. Montrer que siCetDappartiennent µaF, alorsC¢Ddef=fC\Dcg [ fCc\Dgaussi.

Exercice 1.1.2

Exemples de tribus.

1. 2.

Exercice 1.1.3

Fonctions indicatrices.

On note 11

Ala v.a. qui vaut 1 pour!2Aet 0 sinon.

1.

Montrer que 11

A\B= 11A11B.

2.

Montrer que, siA\B=;, on a 11A[B= 11A+ 11B.

3.

Montrer que 11

A[B= 11A+ 11B¡11A\B.

Exercice 1.1.4

Union et intersection.

SoitF1etF2deux tribus. Montrer queF1\ F2est une tribu. Montrer qu'en

Exercice 1.1.5

Tribu grossie par un ensemble.(*)

7

8Rappels

Exercice 1.1.6

est la plus petite sous tribuFtelle queXsoit mesurable de (;F) dans (IR;B).

Exercice 1.1.7

Lois de v.a.

telles queXloi=ZetYloi=T. 1.

ComparerE(f(X)) etE(f(Z)).

2.

ComparerE(X2Y) etE(Z2T).

3.

ComparerE(f(X)g(Y)) etE(f(Z)g(T)).

4.

ComparerE(f(X;Y)) etE(f(Z;T)).

1.2 Variables gaussiennes

Exercice 1.2.1

Moments.

SoitXune v.a.r. de loiN(0;¾2). CalculerE(X3),E(X4),E(jXj) etE(jX3j).

Exercice 1.2.2

Moments.SoitXun v.a. normale. Calculer les moments de e X.

Exercice 1.2.3

Exponentielles.SoitNune v.a. de loiN(0;1). Calculer

E(exp(aN2+bN)). Montrer queE(expa2

2

N2) =E(expaNN0) avecNetN0

i.i.d.

Exercice 1.2.4

Exercice 1.2.5

SoitXune v.a.r. de loiN(m;¾2).

1.

Quelle est la loi de

X¡m

? CalculerEjX¡mj. 2.

Montrer queE(e¸X) = exp(¸m+1

2

¸2¾2). CalculerE(Xe¸X).

3.

Soit ©(x) =1

p

2¼Z

x ¡1 e¡y2 2 dy. Calculer, dans le casm= 0 et¾= 1 la valeur deE(11X·bexp¸X) en fonction de (©;¸;b). 4. CalculerE(expf¸X2+¹Xg) pour 1¡2¸¾2¸0. 5. Montrer queE(eµXf(X)) =emµ+¾2µ2=2E(f(X+µ¾2) pourfcontinue 6. 7.quotesdbs_dbs22.pdfusesText_28